Formal Verification at Higher Levels of Abstraction

Daniel Kroening, Oxford University
Sanjit A. Seshia, UC Berkeley

ICCAD Tutorial
November 8, 2007
The Speakers

Sanjit Seshia
Electrical Engineering and Computer Sciences
University of California, Berkeley

Daniel Kroening
Computing Laboratory
Oxford University

Work described is joint with our students & many collaborators:
R. Bryant, E. Clarke, J. Ouaknine, N. Sharygina, O. Strichman
Level of Abstraction in Design is Increasing

- **System**
- **Behavioral**
- **Register Level**
- **Gate level (netlists)**

SystemC, SystemVerilog, Transactional models, ...

Verilog, VHDL
But Formal Verification is Still Mostly at Bit-Level

- System
- Behavioral
- Register Level
- Gate level (netlists)

Model check
This Talk: Formal Verification at Word-Level or Term-Level

- System
- Behavioral
- Register Level
- Gate level (netlists)

Model check
Outline

- Bit-Vector Decision Procedures
- Term-Level Modeling
- Word-level Predicate Abstraction
- Interpolation
Register-Level Verilog:
module counter_cell(clk, carry_in, carry_out);
input clk;
input carry_in;
output carry_out;
reg value;
assign carry_out = value & carry_in;
initial value = 0;
always @(posedge clk) begin // value = (value + carry_in) % 2;
 case(value)
 0: value = carry_in;
 1: if (carry_in ==0)
 value = 1;
 else value = 0;
 endcase
end
endmodule

Gate Level (netlist):
.model counter_cell
.inputs carry_in
.outputs carry_out
.names value carry_in _n2
.def 0
1 1 1
.names _n2 carry_out$raw_n1
- =_n2
.names value$raw_n3
0
.names _n6
0
.names value _n6 _n7
.def 0
0 1 1
1 0 1
.r value$raw_n3 value
0 0
1 1
.... (120 lines)
Bit-level vs. Word-level

Example bit-level interpolation:

Initial: $i = j + 1$;

$i \leq i + 1$;

$j \leq j + 1$;

- assert $i > j$, $P1$
- assert $i ! = j$, $P2$
- assert $i == j + 1$, $P3$

+ overflow prevention

<table>
<thead>
<tr>
<th></th>
<th>4 bits</th>
<th>8 bits</th>
<th>16 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P1$</td>
<td>37s</td>
<td>>1h</td>
<td>>1h</td>
</tr>
<tr>
<td>$P2$</td>
<td>4s</td>
<td>27s</td>
<td>1:09m</td>
</tr>
<tr>
<td>$P3$</td>
<td>4s</td>
<td>1:34m</td>
<td>2:54m</td>
</tr>
</tbody>
</table>
Verification Tasks of Interest

- Assertion-based Verification (ABV)
- Sequential Equivalence Checking (SEC)

Both for hardware and embedded software
Contrasting Levels of Formal Verification

<table>
<thead>
<tr>
<th>Level of Abstraction</th>
<th>Computational Engines</th>
<th>Model Generation</th>
<th>Level of Abstraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit-Level</td>
<td>SAT, BDDs</td>
<td>Transliteration, with optimizations</td>
<td>Word/Term-Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Types, Predicates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **SMT solvers, Predicate abstraction**

Abstraction based on:
- Types
- Predicates
Contrasting Levels of Formal Verification

<table>
<thead>
<tr>
<th>Level of Abstraction</th>
<th>Model Generation</th>
<th>Computational Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit-Level</td>
<td>Transliteration, with optimizations</td>
<td>SAT, BDDs</td>
</tr>
<tr>
<td>Word/Term-Level</td>
<td>Abstraction based on:</td>
<td>SMT solvers, Predicate abstraction</td>
</tr>
<tr>
<td></td>
<td>● Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Predicates</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Term-Level Modeling
- Bit-Vector Decision Procedures
- Word-Level Predicate Abstraction
- Interpolation
Term/Word-Level Modeling

<table>
<thead>
<tr>
<th>Construct</th>
<th>Word-Level</th>
<th>Term-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>$x_0, x_1, x_2, \ldots, x_{n-1}$</td>
<td>$x_0, x_1, x_2, \ldots, x_{n-1}$ $\in \mathbb{Z}$</td>
</tr>
<tr>
<td>Function</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Memories</td>
<td>n</td>
<td>finite</td>
</tr>
</tbody>
</table>

- Function: $f^n : (x_0, x_1, x_2, \ldots, x_{n-1}) \rightarrow M(a) = w_a$
Motivating Example

Pipelined Microprocessor

Sequential Reference Model

- **Does pipelined microprocessor implement sequential reference model?**

- **Strategy**
 - Verify by correspondence checking [Burch & Dill, CAV ’94]
 - Represent machine instructions, data, and pipeline state as bit vectors
 - Functional blocks like ALU abstracted with uninterpreted functions
Term-level and word-level modeling and verification is implemented in the UCLID Verification System (a joint UC Berkeley – CMU project)

http://uclid.eecs.berkeley.edu/wiki

Here we will focus on the computational engine for word-level reasoning

- Decision procedure for bit-vector arithmetic
Focus: Bit-Vector Arithmetic

- Bit Vector Formulas
 - Types: Fixed width data words
 - Arithmetic and relational operations
 - E.g., add/subtract/multiply/divide/mod & comparisons
 - Two’s complement, unsigned, ...
 - Bit-wise logical operations
 - E.g., bit-wise and/or/xor, shift, extract/concatenate
 - Boolean connectives

- Many Applications for both Hardware and Software
 - Formal verification of hardware designs
 - Based on model checking, equivalence checking, theorem proving, ...
 - Software model checking & static analysis
 - Test/exploit generation
 - Generating signatures of malware (worms/viruses/…)

11/8/2007 Daniel Kroening, Sanjit A. Seshia
The Problem

Is φ satisfiable?

φ

$x = y$

$x + 2z \leq 1$

a

$w \& 0xFFFF = x$

$x \% 26 = v$

E.g.: Any Verilog/C Boolean expression
Decision Procedures/SMT Solvers

- Core technology for formal reasoning

- Boolean SAT
 - Pure Boolean formula

- SAT Modulo Theories (SMT)
 - Decide more expressive (first-order) logics
 - Example theories
 - Linear arithmetic over reals or integers
 - Functions with equality
 - *Bit vector arithmetic*
 - Array/memory operations
 - Combinations of theories

Most SMT Solvers translate to SAT!
UCLID Experience with SAT Solving

Run-time (sec.)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasp (2000)</td>
<td>3600</td>
</tr>
<tr>
<td>zChaff (2001)</td>
<td>766</td>
</tr>
<tr>
<td>BerkMin (2002)</td>
<td>147</td>
</tr>
<tr>
<td>zChaff (2003-04)</td>
<td>118</td>
</tr>
<tr>
<td>Siege (2004)</td>
<td>81</td>
</tr>
<tr>
<td>SatEliteGTI (2005)</td>
<td>46</td>
</tr>
<tr>
<td>Rsat (2007)</td>
<td>19</td>
</tr>
</tbody>
</table>

(on a single benchmark)
BV Decision Procedures: Some History

- B.C. (Before Chaff)
 - String operations (concatenate, field extraction)
 - Linear arithmetic with bounds checking
 - Modular arithmetic

- SAT-Based “Bit Blasting”
 - Generate Boolean circuit based on bit-level behavior of operations
 - Convert to Conjunctive Normal Form (CNF) and check with best available SAT checker
 - Handles arbitrary operations
 - Effective in many applications
 - CBMC [Clarke, Kroening, Lerda, TACAS ’04]
 - Microsoft Cogent + SLAM [Cook, Kroening, Sharygina, CAV ’05]
 - CVC-Lite [Dill, Barrett, Ganesh], Yices [deMoura, et al], STP (early version) [Ganesh & Dill]
Research Challenge

- *Is there a better way than bit blasting?*

- **Requirements**
 - Provide same functionality as with bit blasting
 - Must support all bit-vector operators
 - Exploit word-level structure
 - Improve on performance of bit blasting

- **Current Approaches based on two core ideas:**
 1. **Simplification**: Simplify input formula using word-level rewrite rules and solvers
 2. **Abstraction**: Use automatic abstraction-refinement to solve simplified formula
Bit-Vector Decision Procedures, circa 2007

- Current Techniques with Sample Tools
 - *Proof-based abstraction-refinement* – UCLID [Bryant et al., TACAS ’07]
 - *Solver for linear modular arithmetic* to simplify the formula – STP [Ganesh & Dill, CAV’07]
 - *Counterexample-guided abstraction-refinement, layered approach, rewriting* – MathSAT [Bruttomesso et al, CAV’07]
 - *Automatic parameter tuning* – Spear [Hutter et al., FMCAD ’07]
Abstraction-Refinement Approach

- Deciding Bit-Vector Arithmetic with Abstraction
 - [Bryant, Kroening, Ouaknine, Seshia, Strichman, Brady, TACAS ’07]
 - Use bit blasting as core technique
 - Apply to simplified versions of formula: under and over approximations
 - Generate successive approximations until a solution is found or formula shown unsatisfiable

- Inspired by McMillan & Amla’s proof-based abstraction for finite-state model checking
Approximations to Formula

- **Overapproximation**
 - $\phi +$
 - $\phi \Rightarrow \phi +$
 - More solutions: If unsatisfiable, then so is ϕ

- **Original Formula**
 - ϕ

- **Underapproximation**
 - $\phi -$
 - $\phi - \Rightarrow \phi$
 - Fewer solutions: Satisfying solution also satisfies ϕ

- **Example Approximation Techniques**
 - **Underapproximating**
 - Restrict word-level variables to smaller ranges of values
 - **Overapproximating**
 - Replace subformula with Boolean variable
Starting Iterations

- Initial Underapproximation
 - (Greatly) restrict ranges of word-level variables
 - Intuition: Satisfiable formula often has small-domain solution
First Half of Iteration

- **SAT Result for** φ_1^-
 - **Satisfiable**
 - Then have found solution for φ
 - **Unsatisfiable**
 - Use UNSAT proof to generate overapproximation φ_1^+
 - (Described later)

- **UNSAT proof:** generate overapproximation
- **If SAT, then done**

Diagram:
- φ_1^+
- φ
- φ_1^-

11/8/2007
Second Half of Iteration

SAT Result for φ_1^+

- Unsatisfiable
 - Then have shown φ unsatisfiable
- Satisfiable
 - Solution indicates variable ranges that must be expanded
 - Generate refined underapproximation

If UNSAT, then done
Iterative Behavior

- **Underapproximations**
 - Successively more precise abstractions of φ
 - Allow wider variable ranges

- **Overapproximations**
 - No predictable relation
 - UNSAT proof not unique
Overall Effect

- **Soundness**
 - Only terminate with solution on underapproximation
 - Only terminate as UNSAT on overapproximation

- **Completeness**
 - Successive underapproximations approach φ
 - Finite variable ranges guarantee termination
 - In worst case, get $\varphi_k^- = \varphi$
Generating Overapproximation

- **Given**
 - Underapproximation φ_1^-
 - Bit-blasted translation of φ_1^- into Boolean formula
 - Proof that Boolean formula unsatisfiable

- **Generate**
 - Overapproximation φ_1^+
 - If φ_1^+ satisfiable, must lead to refined underapproximation
 - Generate φ_2^- such that $\varphi_1^- \Rightarrow \varphi_2^- \Rightarrow \varphi$

UNSAT proof: generate overapproximation
Bit-Vector Formula Structure

- DAG representation to allow shared subformulas

\[
x = y
\]
\[
x + 2z \leq 1
\]
\[
\text{w \& 0xFFFF} = x
\]
\[
x \% 26 = v
\]
Structure of Underapproximation

- Translation to CNF
 - Each word-level variable encoded with vector of Boolean variables
 - Additional Boolean variables represent subformula values
Encoding Range Constraints

- **Explicit**
 - View as additional predicates in formula

- **Implicit**
 - Reduce number of variables in encoding
 - **Constraint**
 - \(0 \leq w < 8\)
 - \(-4 \leq x < 4\)
 - **Encoding**
 - \(0 0 0 \cdots 0 w_2w_1w_0\)
 - \(x_sx_sx_s\cdots x_sx_sx_1x_0\)

- Yields smaller SAT encodings
UNSAT Core

- Subset of clauses that is unsatisfiable
- Variables in unsat core define portion of DAG
- Subgraph that cannot be satisfied with given range constraints

\[x + 2z \leq 1 \]
\[w \land 0xFFFF = x \]
\[x \% 26 = v \]
Generated Overapproximation

- Identify subformulas containing no variables from UNSAT proof
- Replace by fresh Boolean variables
- Remove range constraints on word-level variables
- Creates overapproximation
 - Ignores correlations between values of subformulas

\[x = y \]
\[x + 2z \leq 1 \]
\[a \]
\[b_1 \]
\[b_2 \]
Refinement Property

Claim

- ϕ_1^+ has no solutions that satisfy ϕ_1^-

- Because ϕ_1^+ contains portion of ϕ_1^-, that was shown to be unsatisfiable under range constraints

Implication

- Can only satisfy ϕ_1^+ by expanding variable ranges

\[
\begin{align*}
 x &= y \\
 x + 2z &\leq 1 \\
 a &\leq b_1 \\
 b_2 &\geq b
\end{align*}
\]
Effect of Iteration

Each Complete Iteration
- Expands ranges of some word-level variables
- Creates refined underapproximation

SAT: Use solution to generate refined underapproximation

UNSAT proof: generate overapproximation
Approximation Methods

- So Far
 - Range constraints
 - Underapproximate by constraining values of word-level variables
 - Subformula elimination
 - Overapproximate by assuming subformula value arbitrary

- General Requirements
 - Systematic under- and over-approximations
 - Way to connect from one to another

- Goal: Devise Additional Approximation Strategies
Function Approximation Example

Motivation
- Multiplication (and division) are difficult cases for SAT

§: Prohibited
- Gives underapproximation
- Restricts values of (possibly intermediate) terms

§: \(f(x, y) \)
- Overapproximate as uninterpreted function \(f \)
- Value constrained only by functional consistency
Results: UCLID BV vs. Bit-blasting

<table>
<thead>
<tr>
<th>Formula</th>
<th>Ans.</th>
<th>Bit-Blasting Run-time (sec.)</th>
<th>UCLID Run-time (sec.)</th>
<th>STP (sec.)</th>
<th>Yices (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enc.</td>
<td>SAT</td>
<td>Total</td>
<td>Enc.</td>
</tr>
<tr>
<td>Y86-std</td>
<td>UNSAT</td>
<td>17.91</td>
<td>TO</td>
<td>TO</td>
<td>23.51</td>
</tr>
<tr>
<td>Y86-btnft</td>
<td>UNSAT</td>
<td>17.79</td>
<td>TO</td>
<td>TO</td>
<td>26.15</td>
</tr>
<tr>
<td>s-40-50</td>
<td>SAT</td>
<td>6.00</td>
<td>33.46</td>
<td>39.46</td>
<td>106.32</td>
</tr>
<tr>
<td>BBB-32</td>
<td>SAT</td>
<td>37.09</td>
<td>29.98</td>
<td>67.07</td>
<td>19.91</td>
</tr>
<tr>
<td>rfunitflat-64</td>
<td>SAT</td>
<td>121.99</td>
<td>32.16</td>
<td>154.15</td>
<td>19.52</td>
</tr>
<tr>
<td>C1-P1</td>
<td>SAT</td>
<td>2.68</td>
<td>45.19</td>
<td>47.87</td>
<td>2.61</td>
</tr>
<tr>
<td>C1-P2</td>
<td>UNSAT</td>
<td>0.44</td>
<td>TO</td>
<td>TO</td>
<td>2.24</td>
</tr>
<tr>
<td>C3-OP80</td>
<td>SAT</td>
<td>14.96</td>
<td>TO</td>
<td>TO</td>
<td>14.54</td>
</tr>
<tr>
<td>egt-5212</td>
<td>UNSAT</td>
<td>0.064</td>
<td>0.003</td>
<td>0.067</td>
<td>0.163</td>
</tr>
</tbody>
</table>

[results on 2.8 GHz Xeon, 2 GB RAM]

- **UCLID always better than bit blasting**
- **Generally better than other available procedures**
- **SAT time is the dominating factor**
Discussion

- SAT-Based Methods are Effective
 - Bit blasting is only way to capture full set of operations
 - SAT solvers are good & getting better
 - On many UCLID benchmarks, have been getting 2X or better speedup each year since 2000 just from advances in SAT! (see earlier slide)

- Abstraction / Refinement Allows Better Scaling
 - Take advantage of cases where formula easily satisfied or disproven
Current Techniques with Sample Tools

- **Proof-based abstraction-refinement** – UCLID [Bryant et al., TACAS ’07]
- **Solver for linear modular arithmetic** to simplify the formula – STP [Ganesh & Dill, CAV’07]
- **Counterexample-guided abstraction-refinement, layered approach, rewriting** – MathSAT [Bruttomesso et al, CAV’07]
- **Automatic parameter tuning** – Spear [Hutter et al., FMCAD ’07]
STP’s approach

Input Formula ϕ

- **Substitution**
- **Simplification**

Linear equality solving

Bit-Blast

Refine Array Axioms

SAT Solving

[SAT / UNSAT]

Simplify as much as possible then Bit-Blast. Add array axioms on demand.

[Ganesh & Dill, CAV ’07]
STP’s Linear Solver

- Critical step: greatly reduces number of variables and constraints in final SAT problem

- Solver for linear equalities mod power of 2
 - Solve system \(A \mathbf{x} = \mathbf{b} \pmod{2^k} \), online
 - Similar to earlier work by Huang & Cheng, TCAD’01

- General idea:
 1. Solve for a variable with odd coefficient using multiplicative inverse of coefficient, substitute it out of other equations
 2. If no odd coefficient, divide equation by power of 2 and solve for bit-extracted-part of a variable
Example

\[3x + 4y + 2z = 0 \]
\[2x + 2y = -2 \]
\[2x + 4y + 2z = 0 \]

\[x, y, z \text{ are all 3 bits wide – solve mod 8} \]

Steps:

1. Pick an equation that’s solvable
 \[\sum_i a_i x_i = c_i \pmod{2^b} \] solvable iff \(\gcd\{a_1, a_2, \ldots, a_n, 2^b\} \) divides \(c_i \)

2. If it has an odd coefficient \(a_i \), express \(x_i \) in terms of the others
 - Multiply throughout by multiplicative inverse of \(c_i \)

3. Substitute \(x_i \) out of all other equations
Example (contd.)

\[3x + 4y + 2z = 0\]
\[2x + 2y = -2\]
\[2x + 4y + 2z = 0\]

Solvable, has odd coefficient
Multiply throughout by \(3^{-1} \mod 8 = 3\)

solve for \(x\)
\[x = 4y + 6z\]
\[2x + 2y = -2\]
\[2x + 4y + 2z = 0\]

eliminate \(x\)
\[2y + 4z = -2\]
\[4y + 6z = 0\]

No odd coefficient!
Divide by 2, solve for variables expressing lower two bits (mod 4)

Final solved system:
\[x = 4y + 6z\]
\[y[1:0] = 2z[1:0] + 3\]
\[z[1:0] = 2\]

Note this technique solves 1 equation at a time \(\rightarrow\) online
Final Solutions

- Original variables: 3-bit unsigned integers
 \[x: [x_2 \ x_1 \ x_0] \quad y: [y_2 \ y_1 \ y_0] \quad z: [z_2 \ z_1 \ z_0] \]

- Solutions

\[
\begin{align*}
y & = 3 \mod 4 \\
z & = 2 \mod 4
\end{align*}
\]

- In bit-vector form:
 \[y: [y_2 \ 1 \ 1] \quad z: [z_2 \ 1 \ 0] \]

- Back Substitution to solve for \(x \)

\[
\begin{align*}
x & = 4y + 6z \mod 8 \\
x & = 0 \mod 8
\end{align*}
\]

- Constrained variables
 \[x: [0 \ 0 \ 0] \]
Current Techniques with Sample Tools

- *Proof-based abstraction-refinement* – UCLID [Bryant et al., TACAS ’07]
- *Solver for linear modular arithmetic* to simplify the formula – STP [Ganesh & Dill, CAV’07]
- *Counterexample-guided abstraction-refinement, layered approach, rewriting* – MathSAT [Bruttomesso et al., CAV’07]
- *Automatic parameter tuning* – Spear [Hutter et al., FMCAD ’07]
The MathSAT Approach

[Bruttomesso et al., CAV ’07]

- **Pre-processing simplifications**
 - Propagation of unconstrained (fanout = 1) variables
 - Transforming term ITEs to Boolean ITEs
 - Constant propagation
 - Propagating extraction operators through concatenation and bit-wise operators

- **Counterexample guided abstraction-refinement** loop (CEGAR)
 - SAT solver communicates with theory solver (lazy SMT)

- **Layered approach** for theory solver
 - First invoke EUF solver
 - Then use bit-vector rewrite rules
 - Finally use solver based on SAT + Integer linear arith.
Concluding Points

- Resurgence of interest and results in word-level solvers (bit-vector decision procedures)

- Major ideas:
 - Abstraction-Refinement
 - Proof-based
 - CEGAR
 - Word-level Simplifications
 - Linear solver mod power of 2
 - Rewrite rules for bit-vector operators
 - Layered approach (MathSAT) / Function abstraction (UCLID)

- Next step: explore how best to combine term-level and word-level modeling
Outline

- Term-Level Modeling
- Bit-Vector Decision Procedures
- Word-Level Predicate Abstraction
- Interpolation
Word-level Circuit Models

Need to extract \textit{word-level formula} for
1. Initial state
2. Transition relation
3. Property
The SLAM Story

- Microsoft blames most Windows crashes on *third party device drivers*
- The Windows device driver API is quite complicated
- Low-level C code

- **SLAM**: Formal tool to automatically check device drivers for certain errors
- Shipped with Device Driver Development Kit (DDK)
Predicate Abstraction

- Circuits have too many state variables

 \rightarrow State Space Explosion

- Graf/Saïdi 97: Predicate Abstraction

- Idea: Only keep track of *predicates* on data

 $p_1(s), \ldots, p_n(s)$

- Abstraction function:

 $h(s) = (p_1(s), p_2(s), \ldots, p_n(s))$
Predicate Abstraction

Concrete States:

Predicates:

\[p_1(s) = (s.x > s.y) \]
\[p_2(s) = (s.y = 0) \]

Abstract transitions?
Under- vs. Overapproximation

- How to abstract the transitions?
 - Depends on the property we want to show
 - Typically done in a conservative manner

- Existential abstraction:

 \[
 \hat{I}(\hat{s}) : \iff \exists s : I(s)
 \]

 \[
 \hat{R}(\hat{s}, \hat{s}') : \iff \exists s, s' : R(s, s')
 \]

 \[
 \wedge h(s) = \hat{s} \land h(s') = \hat{s}'
 \]

 \[\Rightarrow \text{Preserves safety properties}\]
Predicate Abstraction

Abstract Transitions:

\[p_1, p_2 \]

\[\neg p_1, p_2 \]

\[p_1, \neg p_2 \]

\[\neg p_1, \neg p_2 \]

Property holds. Ok.

Assertion:

\[p_1 \lor \neg p_2 \iff (s.x > s.y) \lor (s.y \neq 0) \]
Predicate Abstraction

Abstract Transitions:

Assertion:

\[p_1 \iff (s.x > s.y) \]

This trace is spurious!
Predicate Abstraction

Abstract Transitions:

Assertion:
\[p_1 \iff (s.x > s.y) \]

New Predicates:
\[p_1(s) = (s.x > s.y) \]
\[p_2(s) = (s.x = 2) \]
Predicate Abstraction for Circuitry

- Let’s take existential abstraction seriously
- Basic idea: with n predicates, there are $2^n \times 2^n$ possible abstract transitions
- Let’s just check them!
Existential Abstraction

Predicates

- p_1 $\iff i = 1$
- p_2 $\iff i = 2$
- p_3 $\iff \text{even}(i)$

Transition Relation

- $i \leq i + 1$

Current Abstract State

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Next Abstract State

<table>
<thead>
<tr>
<th>p'_1</th>
<th>p'_2</th>
<th>p'_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Formula

- $i' = i + 1$

Query

- $i \neq 1 \land i \neq 2 \land \overline{\text{even}(i)} \land$
- $i' = i + 1 \land$
- $i' \neq 1 \land i' \neq 2 \land \overline{\text{even}(i')}$
Existential Abstraction

Predicates

\[p_1 \iff i = 1 \]
\[p_2 \iff i = 2 \]
\[p_3 \iff \text{even}(i) \]

Transition Relation

\[i' = i + 1 \]

Formula

\[p' = p \]

Query

\[i' \neq 1 \land i' \neq 2 \land \text{even}(i) \land \\
\quad i' = i + 1 \land \\
\quad i' \neq 1 \land i' \neq 2 \land \text{even}(i') \]

Current Abstract State

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Next Abstract State

<table>
<thead>
<tr>
<th>(p'_1)</th>
<th>(p'_2)</th>
<th>(p'_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Predicate Abstraction for Circuitry

- A precise existential abstraction can be way too slow
- Use an over-approximation instead
 - Fast to compute
 - But has additional transitions

- *Predicate partitioning*

 (DAC 2005, IEEE TCAD 2008)
Predicate Abstraction for Circuitry

- How do we get the predicates?
- Automatic abstraction refinement!

[Kurshan et al. ’93]
[Ball, Rajamani ’00]
[Clarke et al. ’00]
What I am Going to Show

- Apply predicate abstraction at RT-Level
 - Allows abstraction using word-level predicates
 - Example: $x < y - z$, $x = \{z, z\}$

- Use a SAT solver for computing abstraction
 - Semantics of bit-wise operators taken into account

- Obtaining suitable word level predicates
 - Syntactic weakest pre-conditions of Verilog statements
 - From word-level proofs
Abstraction Refinement Loop

Initial Abstraction

Verification

Actual Circuit

Abstract Model

Model Checker

Property holds

No error or bug found

Simulation successful

Bug found

Counterexample

Spurious counterexample

Refinement

[Clarke et al. ’00]

[Kurshan et al. ’93]

[Ball, Rajamani ’00]

[Clarke et al. ’00]
An example

module main (clk)
input clk;
reg [10:0] x, y;
initial x= 100, y = 200;
always @ (posedge clk) begin
 x <= y;
 y <= x;
end
endmodule

Assertion:
AG (x = 100 ∨ x = 200)
Abstraction Refinement Loop

- **Actual Circuit** → **Abstract Model**
 - **Initial Abstraction**
 - **Verification**
 - **Model Checker**
 - No error or bug found
 - Property holds
 - Counterexample
 - Simulation successful
 - Bug found
 - **Simulator**
 - Spurious counterexample

[References:
- Kurshan et al. '93
- Ball, Rajamani '00
- Clarke et al. '00]
module main (clk)
input clk;
reg [10:0] x, y;
initial x = 100, y = 200;
always @ (posedge clk)
begin
 x <= y;
 y <= x;
end
endmodule

Assertion:
AG (x = 100 ∨ x = 200)

Initial set of predicates:
{x = 100, x = 200}

Transition relation:
x' = y ∧ y' = x

Verilog program
Computing Most Precise Abstraction

Current state

\[<x = 100, \ x = 200>\]

Transition Relation

\[x' := y\]
\[y' := x\]

Next state

\[<x' = 100, \ x' = 200>\]

\[\exists x, y, x', y' : \]
\[(p_1 \iff x = 100) \land (p_2 \iff x = 200) \land\]
\[x' = y \land y' = x \land\]
\[(p_1' \iff x' = 100) \land (p_2' \iff x' = 200)\]

Computing abstract transitions
Obtain transitions

Equation passed to the SAT solver

\[(p_1 \iff x = 100) \land (p_2 \iff x = 200) \land x' = y \land y' = x \land (p'_1 \iff x' = 100) \land (p'_2 \iff x' = 200)\]

Computing abstract transitions

... and so on ...
Abstract Model

Verilog program

module main (clk)
 input clk;
 reg [10:0] x, y;

 initial x= 100, y= 200;

 always @ (posedge clk)
 begin
 x <= y;
 y <= x;
 end
endmodule

Assertion:
AG (x = 100 ∨ x = 200)

Initial set of predicates:
{x = 100, x = 200}

Initial state

Failure state
Abstraction Refinement Loop

Actual Circuit → Abstract Model → Model Checker

Initial Abstraction → Verification

Verification:
- No error or bug found
- Property holds
- Counterexample
- Simulation successful
- Bug found

Refinement:
- Spurious counterexample

Abstraction refinement

[Kurshan et al. ’93]
[Ball, Rajamani ’00]
[Clarke et al. ’00]
module main (clk)
input clk;
reg [10:0] x, y;

initial x= 100, y= 200;

always @ (posedge clk)
begin
 x <= y;
 y <= x;
end
endmodule

Verilog program
Model checking

module main (clk)
input clk;
reg [10:0] x, y;

initial x= 100, y= 200;

always @ (posedge clk)
begin
 x <= y;
 y <= x;
end
endmodule

Verilog program
Abstraction Refinement Loop

Actual Circuit → Abstract Model → Model Checker

Initial Abstraction → Verification

Simulation successful → No error or bug found

Property holds

Counterexample

Refinement

Spurious counterexample

Simulation successful → Bug found

[Clarke et al. ‘00]

[Kurshan et al. ‘93]

[Ball, Rajamani ’00]

[Clarke et al. ’00]
Simulation

Verilog program

module main (clk)
input clk;
reg [10:0] x, y;
initial x= 100, y= 200;
always @ (posedge clk)
begin
 x <= y;
 y <= x;
end
endmodule

Counterexample is spurious

Abstract counterexample

Initial state

Failure state

<x = 100, x = 200>

1,0 → 0,0

Counterexample is spurious
Abstraction Refinement Loop

[Abstraction Refinement Loop Diagram]

Actual Circuit ➞ Abstract Model ➞ Model Checker ➞ Simulator

Initial Abstraction ➞ Verification

- No error or bug found
- Property holds
- Simulation successful
- Bug found

Refinement

- Abstraction refinement
- Spurious counterexample

References:
- [Kurshan et al. ’93]
- [Ball, Rajamani ’00]
- [Clarke et al. ’00]
Refinement

Let length of spurious counterexample be \(k \)

Take \textbf{weakest pre-condition of property} for \(k \) steps \textbf{with respect to transition function}
Refinement

Property

$AG (x = 100 \lor x = 200)$

New predicates

$y = 100, y = 200$

(y = 100 \lor y = 200)

$x' := y$

$y' := x$

$(x' = 100 \lor x' = 200)$

Holds after one step

weakest precondition

spurious counterexample

length = 1

Property

$(y = 100 \lor y = 200)$
Assertion:
\(AG (x = 100 \text{ or } x = 200) \)

Updated set of predicates:
\{x = 100, x = 200, y=100, y=200\}

New abstraction

Initial state

Model check
Model checking

Verilog program

module main (clk)
input clk;
reg [10:0] x, y;

initial x= 100, y= 200;

always @ (posedge clk)
begin
 x <= y;
 y <= x;
end
endmodule

Assertion:
AG (x = 100 or x = 200)

Updated set of predicates:
{x = 100, x = 200, y=100, y=200}

New abstraction

Initial state

Property holds!
Result

Verilog program

module main (clk)
input clk;
reg [10:0] x, y;

initial x= 100, y= 200;

always @ (posedge clk)
begin
 x <= y;
 y <= x;
end
endmodule

Assertion
AG (x = 100 or x = 200)

Property holds!
Making it work in practice

- Predicate Abstraction Computation
 - Handling a large number of predicates

- Refinement
 1. Good predicates but inexact abstraction (due to over approximation of most precise abstraction)
 2. Insufficient predicates
Other Approaches

- SAT-Based Predicate Abstraction [Wang et al.]
 - Works at netlist level
 - Refinement introduces bit-level predicates

- Vapor tool [Andraus et al.]
 - Works on RT-level designs
 - Abstraction to CLU models
 (equality of terms, uninterpreted functions, predicates)

- Lots of other related work
Benchmarks

- USB 2.0 function core from opencores.org
- 4000 lines of RTL Verilog

Checked three properties:
1. DMA module simulates state machine on left. (USB1)
2. Every state transitions to IDLE state when abort signal is on. This property fails. (USB2)
3. Every state expect MEM_WR2 transitions to IDLE state when abort signal is on. (USB3)
Benchmarks

- Ethernet MAC from opencores.org
- 5000 lines of RTL Verilog

Checked three properties:

1. Transmit module simulates state machine on left. (ETH0)
2. Checks transitions out of state BackOff (ETH1)
3. Checks transitions out of state Jam (ETH2)
Other Benchmarks

- ICRAM (Instruction Cache RAM)
 - ICache from SUN PicoJava II
 - Contains a memory whose size can be varied
 - Two properties related to writing to and reading from memory

- AR benchmarks
 - Simple arithmetic benchmark with two registers
 - Can vary the size of registers
Experimental results

A dash "-" indicates a timeout of 2 hours.

A star "*" indicates model checker terminated due to large number of BDD variables.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Latches</th>
<th>Time</th>
<th>Abs</th>
<th>MC</th>
<th>Ref</th>
<th>P</th>
<th>I</th>
<th>CSMV Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB1</td>
<td>545</td>
<td>42</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>17</td>
<td>62/0</td>
<td>149</td>
</tr>
<tr>
<td>USB2</td>
<td>545</td>
<td>599</td>
<td>47</td>
<td>147</td>
<td>386</td>
<td>116</td>
<td>146/22</td>
<td>1349</td>
</tr>
<tr>
<td>USB3</td>
<td>545</td>
<td>446</td>
<td>46</td>
<td>73</td>
<td>317</td>
<td>114</td>
<td>123/20</td>
<td>2594</td>
</tr>
<tr>
<td>ETH0</td>
<td>359</td>
<td>44</td>
<td>2</td>
<td>3</td>
<td>30</td>
<td>21</td>
<td>55/0</td>
<td>-</td>
</tr>
<tr>
<td>ETH1</td>
<td>359</td>
<td>127</td>
<td>8</td>
<td>8</td>
<td>102</td>
<td>93</td>
<td>49/2</td>
<td>-</td>
</tr>
<tr>
<td>ETH2</td>
<td>359</td>
<td>161</td>
<td>8</td>
<td>16</td>
<td>127</td>
<td>94</td>
<td>109/2</td>
<td>21</td>
</tr>
<tr>
<td>M2KB</td>
<td>16427</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1/0</td>
<td>28</td>
</tr>
<tr>
<td>M8KB</td>
<td>65694</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>3</td>
<td>1/0</td>
<td>*</td>
</tr>
<tr>
<td>M16KB</td>
<td>131117</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>3</td>
<td>1/0</td>
<td>*</td>
</tr>
<tr>
<td>N2KB</td>
<td>16427</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>93</td>
<td>11</td>
<td>9/0</td>
<td>*</td>
</tr>
<tr>
<td>N8KB</td>
<td>65694</td>
<td>490</td>
<td>0</td>
<td>0</td>
<td>490</td>
<td>11</td>
<td>9/0</td>
<td>*</td>
</tr>
<tr>
<td>N16KB</td>
<td>131117</td>
<td>790</td>
<td>0</td>
<td>0</td>
<td>789</td>
<td>11</td>
<td>9/0</td>
<td>*</td>
</tr>
<tr>
<td>AR200</td>
<td>400</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3/2</td>
<td>672</td>
</tr>
<tr>
<td>AR3000</td>
<td>6000</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>3</td>
<td>3/2</td>
<td>-</td>
</tr>
<tr>
<td>AR4000</td>
<td>8000</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>3</td>
<td>3/2</td>
<td>-</td>
</tr>
</tbody>
</table>

Hardware

- **USB
- Ethernet
- MAC
- ICRAM
- AR**
Predicates from Word-Level Proofs

- Predicates from weakest-preconditions not always ideal
- Idea: use a word-level proof-engine to get better ones (DATE 2007)
Example: Word-level Proof

reg [6:0] c;
initial c=0;

always @(posedge clk)
 if(c!=64 && issue && !retire)
 c=c+1;
 else if(c!=0 && !issue && retire)
 c=c-1;

ROB

head

tail
Example: Word-level Proof (I)

```verilog
reg [6:0] c;
initial c=0;

always @(posedge clk)
    if(c!=64 && issue && !retire)
        c=c+1;
    else if(c!=0 && !issue && retire)
        c=c-1;
```

\[
s'.c = \begin{cases}
 s.c + 1 & : \; s.c \neq 64 \land s.\text{issue} \land \neg s.\text{retire} \\
 s.c - 1 & : \; s.c \neq 0 \land \neg s.\text{issue} \land s.\text{retire} \\
 s.c & : \; \text{otherwise}
\end{cases}
\]
Example: Word-level Proof (II)

\[s'.c = \begin{cases}
 s.c + 1 & : \ s.c \neq 64 \land s.issue \land \neg s.retire \\
 s.c - 1 & : \ s.c \neq 0 \land \neg s.issue \land s.retire \\
 s.c & : \ otherwise
\end{cases} \]

\[(s.c \neq 64 \land s.issue \land \neg s.retire) \rightarrow s'.c = s.c + 1 \]
\[\land\ (s.c \neq 0 \land \neg s.issue \land s.retire) \rightarrow s'.c = s.c - 1 \]
\[\land\ (\neg(s.c \neq 64 \land s.issue \land \neg s.retire) \land \neg(s.c \neq 0 \land \neg s.issue \land s.retire)) \rightarrow s'.c = s.c \]
Example: Word-level Proof (III)

Property: \(c \neq 127 \)

+ predicate \(c = 127 \)

Spurious counterexample of length 2
Example: Word-level Proof (IV)

- Refinement with weakest precondition produces predicate $c = 126$

- Requires 64 refinement iterations

- Instead: Give simulation instance to word-level prover and perform BFS proof-search

- Generates predicate $c \leq 64$, which shows the property
Summary: Predicate Abstraction

- Verification at register level without going to netlists
- Predicate abstraction using word-level predicates
- Handling large no. of predicates (predicate clustering)
- Weakest pre-conditions or proofs for obtaining new predicates

VCEGAR

http://www.cs.cmu.edu/~modelcheck/vcegar
Questions?