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Growing Use of Machine Learning/Artificial Intelligence in            
Safety-Critical Cyber-Physical Systems 
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Growing Concerns about Safety:
• Numerous papers showing that Deep Neural Networks can be easily fooled
• Fatal accidents involving potential failure of object detection/classification 

systems in self-driving cars

How do we make AI/ML-based Autonomous Systems Safe & Dependable?



Challenges for Verified AI  
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System S
Environment E
Specification ϕ

YES [+ proof]
Does S || E 
satisfy ϕ?

NO 
[+ counterexample]

S. A. Seshia, D. Sadigh, S. S. Sastry.  
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

Design Correct-by-Construction?

Need to Search Very 
High-Dimensional Input 
and State Spaces

https://arxiv.org/abs/1606.08514


Need Design Principles for Verified AI

Challenges
1. Environment (incl.    

Human) Modeling
2. Formal Specification

3. Learning Systems 
Representation

4. Scalable Training,    
Testing, Verification

5. Design for Correctness

Principles

?
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. 
July 2016. https://arxiv.org/abs/1606.08514.

Verified AI Project
VerifAI software toolkit

https://github.com/BerkeleyLearnVerify/VerifAI

https://github.com/BerkeleyLearnVerify/VerifAI


Outline

• Motivating Example

• Specification/Requirements

• Verification: Compositionality and Abstraction

• Environment Modeling – ODDs, Test Scenarios, etc.

• Synthesis: Data-Set Design, Run-Time Assurance, etc.

• The VerifAI toolkit & Conclusion
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Example: Automatic Emergency Braking System (AEBS) 
using Deep Learning for Perception
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Controller Vehicle 
(Plant)

Environment

Sensor Input

• Goal: Brake when an obstacle is near, to maintain a minimum safety distance
• Models: Controller, Plant, Env modeled in a software-in-the-loop simulator

• Matlab/Simulink, Udacity, Webots, CARLA, …
• Perception: Object detection/classification system based on deep neural networks 

• Inception-v3, AlexNet, … trained on ImageNet
• squeezeDet, Yolo, … trained on KITTI

Deep Learning-Based Object Detection

[Dreossi, Donze, Seshia, “Compositional Falsification of Cyber-Physical Systems with Machine Learning 
Components”, NASA Formal Methods (NFM), May 2017.]



Challenge: Formal Specification 
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Principle: Start at the System Level                                               
(i.e. Specify Semantic Behavior of the 

Overall System)



Our Approach: Start with a System-Level Specification
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“Verify the Deep Neural Network Object Detector”

“Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

Controller Plant

Environment

Learning-Based Perception

Temporal Logic: G (dist(ego vehicle, env object) > ∆)

Property does 
not mention 

inputs/outputs 
of the neural 

network



Do We Need to Formally Specify ML Component Requirements?

Sometimes…

1. When Component Specifications are Meaningful
– ML-based Controllers
– Semantic Robustness*, Input-Output Relations, Monotonicity, Fairness, etc.

2. For Compositional Analysis
– Derive component specifications from system-level specifications
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[S. A. Seshia, et al., “Formal Specification for Deep Neural Networks”, ATVA 2018.]



Challenge: Scalability of Verification

Principle: Compositional Simulation-
Based Verification (Falsification)

S. A. Seshia 10

T. Dreossi, A. Donze, and S. A. Seshia. Compositional Falsification of Cyber-Physical Systems 
with Machine Learning Components, In NASA Formal Methods Symposium, May 2017. 
(Extended version: Journal of Automated Reasoning, 2019.)



Automotive system with ML-based perception (CPSML)
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Controller Plant

Environment

Learning-Based Perception

x y
sp

u
sp

se

Traditional closed-loop model (CPS)

Controller Plant

Environment

sp

u
sp

se

Challenge: se <<  x



Our Approach: Three Key Ideas

1. Reduce CPSML falsification problem to combination of CPS 
falsification and ML analysis by abstraction

2. Simulation-based temporal logic falsification for CPS model
– Scalable technology already used on production automotive systems 

(powertrain)

3. Semantic feature space analysis of ML component
– Derive constraints on input feature space of neural network (pixels) from 

semantic constraints on environment model

S. A. Seshia 12
[Dreossi et al., NFM’17, JAR’19;  Dreossi et al., CAV’18]



Compositional Approach: Combine Temporal Logic 
CPS Falsifier with ML Analyzer
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CPSML 
model M

Property 
Φ

[Dreossi, Donze, Seshia, NFM 2017]

Abstract ML 
component 

away from M

Overapproximate M
Underapproximate M

Invoke CPS Falsifier
(multiple times)

Region of Uncertainty 
ROU(se,sp,u)

Component
(ML) Analysis

Component-level errors
(misclassifications)

Refine

Project to ML 
Feature Space

FS(x)

where ML decision matters

Counterexample(s)Full CPSML 
Simulation



Identifying Component-Level Input Constraints (ROU) for 
Automatic Emergency Braking System
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ML always correct ML always wrong Potentially unsafe region 
depending on ML 

component (yellow)

Green  environments where system-level safety property is satisfied

Underapproximate M Overapproximate M

[Dreossi et al., NFM’17, JAR’19;  Dreossi et al., CAV’18]



Result on AEBS Example
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Inception-v3
Neural 

Network
(pre-trained on 
ImageNet using 

TensorFlow)

Misclassifications

This misclassification not of concern

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]

Sample image

S. A. Seshia



Result on AEBS Example
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Inception-v3
Neural 

Network
(pre-trained on 
ImageNet using 

TensorFlow)

Misclassifications

Corner case
Image  

But this one is a real 
hazard!

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]S. A. Seshia



Extending to Image Streams
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Superimposition of tests on background
Blind spots

Results on squeezeDet NN and KITTI dataset for autonomous driving

[Dreossi, Ghosh, et al., ICML 2017 workshop]



Challenge: How to (Re)Design              
Learning Components

Principle: Use
Oracle-Guided Inductive Synthesis (OGIS)
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Standard Machine Learning
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LEARNER SOURCE OF DATA

labeled/unlabeled data

Learned Model only as good as the Data!



Correct-by-Construction Design with Formal 
(Oracle-Guided) Inductive Synthesis/Learning
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[Jha & Seshia, “A Theory of Formal Synthesis via Inductive Learning”, 2015,
Acta Informatica 2017.]

Key Idea: Oracle-Guided Learning
Combine Learner with Oracle (e.g., Verifier) that answers Learner’s Queries

LEARNER ORACLE

query

response



Counterexample-Guided Training of Deep Neural Networks

• Instance of Oracle-Guided Inductive Synthesis
• Oracle is Verifier (CPSML Falsifier) used to find counterexample inputs 

to DNN
• Substantially increase accuracy with relatively few additional examples
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DEEP NEURAL 
NETWORK
LEARNER

FALSIFIER 
(CPS + ML)

Learned Model

“Counterexample-Guided Data Augmentation”, T. Dreossi, S. Ghosh, X. Yue, K. Keutzer,             
A. Sangiovanni-Vincentelli, S. A. Seshia, IJCAI 2018.



Challenge: Environment Modeling

Principles: Data-Driven, Probabilistic, Introspective, 
Modeling
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. 
July 2016. https://arxiv.org/abs/1606.08514.



SCENIC: Scenario Description Language
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• Scenic is a probabilistic programming language defining distributions over scenes
• Use cases: data generation, test generation, verification, debugging, design exploration, etc.

• Example 
scenario: a 
badly-parked 
car

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, 
EECS TR March 2018, in PLDI 2019.]

Images created with GTA-V



SCENIC: Scenario Description Language
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Scenic makes it possible to specify broad scenarios with complex structure, 
then generate many concrete instances from them automatically:

Platoons Bumper-to-Bumper Traffic



Use Case: Debugging a Known Failure
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Use Case: Debugging a Known Failure
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Scenic makes it easy to vary a scenario along different dimensions:

Add noise Change car model Change global position



VERIFAI: A Toolkit for the Design and Analysis of            
AI-Based Systems https://github.com/BerkeleyLearnVerify/VerifAI

https://github.com/BerkeleyLearnVerify/VerifAI


Case Study for Temporal Logic Falsification with 
VerifAI: Navigation around an accident scenario

Ego Car (AV) Broken Car
Cones

Lane 
Keeping

Lane 
Change

d

d < 15

lane change
complete

29



Modeling Case Study in the SCENIC Language

Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.



Using Scenic to Generate Initial Scenes
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Using Scenic to Generate Initial Scenes
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Using Scenic to Generate Initial Scenes
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Falsification



Analyzing the failure

d = 30 
Incorrectly detected 14.5

Fix the controller:
Update model assumptions 

and re-design controller 

v < 15
Violates controller 

assumptions

Retrain the perception module:
Collect the counter-example images and 

retrain the network [IJCAI’18]
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Different Case Study: Automated Taxiing
• NN-based research prototype from Boeing
• Specification: track centerline within 1.5 m



Falsifying Run Found with VerifAI/Scenic



Links and Ongoing Work

• Open-Source Releases: the Verified AI toolkit [CAV 2019]

– VerifAI: https://github.com/BerkeleyLearnVerify/VerifAI
– Scenic: https://github.com/BerkeleyLearnVerify/Scenic
– Operate with any simulator

• Other results/ongoing projects:
– Bridging Simulation and Real World

• Domain adaptation to produce “real” data from simulated data 
• Quantifying distance between simulated and real behaviors [HSCC 2019]

– More Complex Sensors: Video + LiDAR + RADAR + …
– Counterexample-Guided Retraining/Data Set Design [IJCAI 2018]

S. A. Seshia 38

https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/Scenic


Conclusion: Towards Verified AI/ML based CPS
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. 
July 2016. https://arxiv.org/abs/1606.08514.

Challenges
1. Environment (incl.    

Human) Modeling
2. Specification

3. Learning Systems 
Complexity

4. Efficient Training,    
Testing, Verification

5. Design for Correctness

Core Principles

Data-Driven, Introspective, Probabilistic 
Modeling
Start with System-Level Specification, 
then Component Spec (robustness, …)
Abstraction, Semantic Representation, 
and Explanations
Compositional Analysis and Semantics-
directed Search/Training 
Oracle-Guided Inductive Synthesis; 
Run-Time Assurance

Exciting Times Ahead!!!  Thank you!
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