Verified Artificial Intelligence
and Autonomy

Sanjit A. Seshia
Professor
EECS Department, UC Berkeley

NFM 2020 Keynote
May 13, 2020
Growing Use of Machine Learning/Artificial Intelligence in Safety-Critical Autonomous Systems

Growing Concerns about Safety:

• Numerous papers showing that *Deep Neural Networks can be easily fooled*
• *Fatal accidents* involving potential failure of AI/ML-based perception systems in self-driving cars

Artificial Intelligence based systems for automotive

<table>
<thead>
<tr>
<th>Year</th>
<th>Millions of units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>20</td>
</tr>
<tr>
<td>2017</td>
<td>30</td>
</tr>
<tr>
<td>2018</td>
<td>40</td>
</tr>
<tr>
<td>2019</td>
<td>50</td>
</tr>
<tr>
<td>2020</td>
<td>60</td>
</tr>
<tr>
<td>2021</td>
<td>70</td>
</tr>
<tr>
<td>2022</td>
<td>80</td>
</tr>
<tr>
<td>2023</td>
<td>90</td>
</tr>
<tr>
<td>2024</td>
<td>100</td>
</tr>
<tr>
<td>2025</td>
<td>110</td>
</tr>
</tbody>
</table>

Notes: Includes infotainment (virtual assistance, gesture and speech recognition) and autonomous driving applications (object detection and freespace detection)

Source: IHS Technology - Automotive Electronics Roadmap Report, H1 2016 © 2016 IHS
Can we address the Design & Verification Challenges of AI/ML-Based Autonomy with Formal Methods?
Challenges for Verified AI

System S || Environment E Specification ϕ

Does $S \parallel E$ satisfy ϕ?

YES [+ proof]
NO [+ counterexample]

Need to Search Very High-Dimensional Input and State Spaces

DesignCorrect-by-Construction?

Need Design Principles for Verified AI

Challenges

1. Environment (incl. Human) Modeling
2. Formal Specification
3. Learning Systems Representation
4. Scalable Training, Testing, Verification
5. Design for Correctness

Principles

Outline

• Challenges for Verified AI

• Formal Methods for Cyber-Physical Systems (CPS) with AI/ML Components
 – Specification, Verification, Synthesis
 – Autonomous Vehicles (ground and air)
 – Deep Learning for Perception

• Principles for Verified AI
 – Summary of Ideas
 – Future Directions
Example: Automatic Emergency Braking System (AEBS) using Deep Learning for Perception

- **Goal:** Brake when an obstacle is near, to maintain a minimum safety distance
- **Models:** Controller, Plant, Env modeled in a software-in-the-loop simulator (created in Matlab/Simulink, Udacity, Webots, CARLA, LGSVL, …)
- **Perception:** Object detection/classification system based on deep neural networks
 - Inception-v3, AlexNet, … trained on ImageNet
 - more recent: squeezeDet, Yolo, … trained on KITTI

Challenge: Formal Specification

Principle: Start at the System Level (i.e. Specify Semantic Behavior of the Overall System)
Our Approach: Start with a **System-Level Specification**

- “Verify the Deep Neural Network Object Detector”
- “Verify the System containing the Deep Neural Network”

Formally Specify the *End-to-End Behavior* of the System

Temporal Logic: $\mathbf{G} (\text{dist}(\text{ego vehicle, env object}) > \Delta)$

Property does not mention inputs/outputs of the neural network
Do We Need to Formally Specify **ML Component** Requirements?

Sometimes...

1. **When Component Specifications are Meaningful**
 - ML-based Planners/Controllers
 - Semantic Robustness*, Input-Output Relations, Monotonicity, Fairness, etc.

2. **For Compositional/Modular Analysis**
 - Derive component specifications from system-level specifications

Semantic Robustness

Semantic Feature Space S

Renderer R

Concrete Input Space X

DNN f

Output Space Y

$\{\text{car, no_car}\}$

Semantic Robustness:

$[s \approx_S s' \land R(s) = x \land R(s') = x'] \Rightarrow f(x) \approx_Y f(x')$

Can apply techniques from standard adversarial analysis, provided R is differentiable

Semantic Adversarial Analysis with Differentiable Rendering

SqueezeDet NN for object detection on Virtual KITTI data set

Uses 3D-SDN differentiable renderer [Yao et al. NeurIPS’18] and FGSM on semantic feature space

[Jain, Wu, Chandrasekharan, Chen, Jang, Jha, Seshia, 2019]
Challenge: Scalability of Verification

Principle: Compositional Simulation-Based Verification (Falsification)

Automotive system with ML-based perception (CPSML)

Traditional closed-loop model (CPS)

Challenge: $s_e << x$
Our Approach: Three Key Ideas

1. Reduce CPSML falsification problem to combination of CPS falsification and ML analysis by abstraction

2. Simulation-based temporal logic falsification for CPS model
 – Scalable technology already used on production CPS

3. Semantic feature space analysis of ML component
 – Derive constraints on input feature space of neural network (pixels) from semantic constraints on environment model

[Dreossi et al., NFM’17, JAR’19; Dreossi et al., CAV’18]
Simulation-based Falsification: Logical Formulas to Objective Functions

• Use Temporal Logics with Quantitative Semantics (STL, MTL, etc.)

• Example:

\[G_{[0,\tau]}(\text{dist(vehicle, obstacle)} > \delta) \]

\[\inf_{[0,\tau]} [\text{dist(vehicle, obstacle)} - \delta] \]

• Verification → Optimization
Need *Compositional Falsification of CPSML*

- **Challenge:** Very High Dimensionality of Input Space!
- **Standard solution:** Use *Compositional (Modular) Verification*

- **However:** *no formal spec.* for neural network!
- **Compositional Verification without Compositional Specification?!!**

(see [Seshia, UCB/EECS TR 2017])
Compositional Approach: Combine Temporal Logic CPS Falsifier with ML Analyzer

Abstract ML component away from M

Overapproximate \overline{M}
Underapproximate \underline{M}

Invoke CPS Falsifier (multiple times)

Region of Uncertainty $\text{ROU}(s_c,s_p,u)$

Full CPSML Simulation
Component-level errors (misclassifications)

Component (ML) Analysis

Project to ML Feature Space

where ML decision matters

CPSML model M
Property Φ

[Dreossi, Donze, Seshia, NFM 2017]
Identifying Component-Level Input Constraints (ROU) for Automatic Emergency Braking System

Green \rightarrow environments where system-level safety property is satisfied

[Underapproximate M] \Rightarrow [Overapproximate \overline{M}]

ML always correct \Rightarrow ML always wrong \Rightarrow Potentially unsafe region depending on ML component (yellow)

[Dreossi et al., NFM’17, JAR’19; Dreossi et al., CAV’18]
Result on AEBS Example

Inception-v3
Neural Network
(pre-trained on ImageNet using TensorFlow)

This misclassification not of concern

Sample image

[Misclassifications]

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]
Result on AEBS Example

Inception-v3 Neural Network
(pre-trained on ImageNet using TensorFlow)

But this one is a real hazard!

Corner case Image

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]
Extending to Image Streams

Superimposition of tests on background

Blind spots

Results on squeezeDet NN and KITTI dataset for autonomous driving

[Dreossi, Ghosh, et al., ICML 2017 workshop]
Challenge: Environment Modeling

Principles: Data-Driven, Probabilistic, Introspective, Modeling

SCENIC: A Language for Modeling Environment Scenarios

• **Scenic** is a probabilistic programming language defining distributions over scenes
• **Use cases:** data generation, test generation, verification, debugging, design exploration, etc.

```python
from gta import Car, curb, roadDirection

ego = Car

spot = OrientedPoint on visible curb
badAngle = Uniform(1.0, -1.0) * (10, 20) deg
Car left of (spot offset by -0.5 @ 0),
    facing badAngle relative to roadDirection
```

• Example scenario: a badly-parked car

Scenic makes it possible to specify broad scenarios with complex structure, then generate many concrete instances from them automatically:

Platoons

Bumper-to-Bumper Traffic

(~20 lines of Scenic code)
Use Case: Retraining with Hard Cases

Improves accuracy on hard cases without compromising accuracy on original training set

e.g. for car detection, one car partially occluding another:
Use Case: Debugging a Known Failure
Use Case: Debugging a Known Failure

Scenic makes it easy to vary a scenario along different dimensions:

Add noise

Change car model

Change global position
VERIFAI: A Toolkit for the Design and Analysis of AI-Based Systems [CAV 2019]

https://github.com/BerkeleyLearnVerify/VerifAI

System (Code, Models)

Environment Model (e.g. SCENIC program)

Specification (e.g. temporal logic, obj. function)

Semantic/Abstract Feature Space

Simulator (external interface)

Search

Monitor

Error/Counterexample Analysis

Fuzz Testing

Falsification

Root Cause Analysis

Data Augmentation / Retraining

Hyper-Parameter / Model Parameter Synthesis

VERIFICATION

DEBUGGING

SYNTHESIS
Case Study for Temporal Logic Falsification with VerifAI: Navigation around an accident scenario

Ego Car (AV) → Broken Car

Lane Keeping → Lane Change

d < 15
lane change complete

Cones

30
Modeling Case Study in the SCENIC Language

Pick location for blockage randomly along curb
blockageSite = OrientedPoint on curb

Place traffic cones
spot1 = OrientedPoint left of blockageSite by (0.3, 1)
cone1 = TrafficCone at spot1,
 facing (0, 360) deg

...

Place disabled car ahead of cones
SmallCar ahead of spot2 by (-1, 0.5) @ (4, 10),
 facing (0, 360) deg

Using Scenic to Generate Initial Scenes
Using Scenic to Generate Initial Scenes
Using Scenic to Generate Initial Scenes
Falsification
Analyzing the failure

Fix the controller:
Update model assumptions and re-design controller

Retrain the perception module:
Collect the counter-example images and retrain the network [IJCAI’18]

\(d = 30 \)

Incorrectly detected 14.5

\(v < 15 \)

Violates controller assumptions
Challenge: How to (Re)Synthesize Machine Learning Components

Principle: Use Oracle-Guided Inductive Synthesis (OGIS)

D. Fremont et al. *Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI*, CAV 2020.
Learned Model only as good as the Data!
Correct-by-Construction Design with Oracle-Guided Inductive Synthesis

Key Idea: **Oracle-Guided Learning**
Combine Learner with Oracle (e.g., Verifier) that answers Learner’s Queries

Common Instance: Counterexample-Guided Inductive Synthesis

DARPA Assured Autonomy Case Study: Automated Taxiing

- TaxiNet: NN-based research prototype from Boeing
- Specification: track centerline within 1.5 m
Scenic Scenario for Falsification of TaxiNet in X-Plane

Semantic features:

- Time of day
- Type of clouds
 - none, cirrus, overcast, etc.
- Percentage of rain
- Position & size of tire mark

Property: $\mathbf{G} [\text{CTE} \leq 1.5 \text{ m}]$

```python
# Time of day: from 6 am to 6 pm
param zulu_time = ((6, 18) + 8) * 60 * 60

# Raining 1/3 of the time.
# 2/3: any cloud type 0-5; zero rain
# 1/3: cloud types 3-5; rain from 25% to 100%
clouds_and_rain = Options({
    tuple([Uniform(0, 1, 2, 3, 4, 5), 0]): 2,
    tuple([Uniform(3, 4, 5), (0.25, 1)]): 1
})
param cloud_type = clouds_and_rain[0]
param rain_percent = clouds_and_rain[1]

# Plane
ego = Plane

# Smudge (tire mark) on the runway
Smudge at (-10, 10) @ (40, 80),
    facing Normal(0, 2) deg,
    with height Normal(20, 3),
    with alpha (0.4, 1)
```
Falsifying Run Found with VerifAI/Scenic
Error Analysis and Debugging

• Initial experiment: 2405 runs
 – 45% violated the CTE property

• Tire mark had no effect (neither did rain)

• Time of day most important

• Clouds also significant
Impact of Time of Day (with no clouds)
Retraining using Scenic

- Used Scenic to generate a diverse training set including counterexamples
- Initial plane position up to 8 meters and 30° off of centerline

```plaintext
# Time of day: from 6 am to 6 pm
local_time = (6, 18)
param zulu_time = (local_time + 8) * 60 * 60

# Raining 1/3 of the time.
# Rain requires cloud types 3-5.
rain_frac = (0.25, 1)
clouds_and_rain = Options({
    tuple([Uniform(0, 1, 2, 3, 4, 5), 0]): 2,
    tuple([Uniform(3, 4, 5), rain_frac]): 1
})
param cloud_type = clouds_and_rain[0]
param rain_percent = clouds_and_rain[1]

# Plane
ego = Plane at (-8, 8) @ (0, 2000),
    facing (-30, 30) deg
```
Results of Retraining

- Above: original
- Below: retrained

(Both simulations use exactly the same initial condition and env parameters)
Results of Retraining

- Significantly improved performance, but bugs remain
 - Original model satisfies property 37% of time; retrained 62% of time
Ongoing/Future Directions

Open-Source Verified AI Toolkit
(VerifAI & Scenic, on github)

Verified Human-Robot Collaboration
Learning Specifications from Demonstrations, Interaction-Aware Control, etc. [IROS 2016, NeurIPS 2018, CAV 2020]

Run-Time Assurance
SOTER framework based on Simplex architecture [DSN 2019]

Explaining Success/Failures of Deep Learning
Automated approach using Scenic [CVPR 2020]

Bridging Simulation & Real World
Metrics to compare simulated vs real behaviors [HSCC 2019]
Using falsification to design real world tests [ITSC 2020]
Safety in Simulation ➔ Safety on the Road? [Fremont et al., ITSC 2020]

Unsafe in simulation ➔ unsafe on the road: 62.5% (incl. collision)
Safe in simulation ➔ safe on the road: 93.5% (no collisions)

[joint work with American Automobile Association and LG Electronics]
Conclusion: Towards Verified AI/ML based Autonomy

Challenges

<table>
<thead>
<tr>
<th>#</th>
<th>Challenge</th>
<th>Core Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Environment (incl. Human) Modeling</td>
<td>Data-Driven, Introspective, Probabilistic Modeling</td>
</tr>
<tr>
<td>2.</td>
<td>Specification</td>
<td>Start with System-Level Specification, then Component Spec (robustness, ...)</td>
</tr>
<tr>
<td>3.</td>
<td>Learning Systems Complexity</td>
<td>Abstraction, Semantic Representation, and Explanations</td>
</tr>
<tr>
<td>5.</td>
<td>Design for Correctness</td>
<td>Oracle-Guided Inductive Synthesis; Run-Time Assurance</td>
</tr>
</tbody>
</table>

Exciting Times Ahead!!! Thank you!
