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From RTS Design to Implementation
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Task sequence:
execution times,
response time

Can we guarantee that: response time < deadline?
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WCET: Timing Analysis Abstraction
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In general it is infeasible to model all possible execution
scenarios and combinations of task execution times
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WCET analysis abstracts the different execution times of each
task to one single value WCET bound
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WCET vs. calculated WCET bound
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Remarks on WCET Analysis
• Computes upper bounds
• Bounds are application-dependent
• Assesses time that processor is actually executing 

the code
• WCET result is hardware-dependent

WCET bounds must be safe
WCET bounds should be tight
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Requirements on WCET Analysis Tools
Find feasible abstractions and analysis methods such that:
1. development effort of WCET tool is affordable
2. the calculated WCET estimates are sufficiently precise
3. analysis problems are tractable with acceptable resource 

requirements, and
4. the WCET tool is easy to use

Acceptance depends on application domain…

Tradeoffs required: there is no single WCET analysis 
technique that is well-suited for all application domains!!  
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The Path Problem
• The path problem: calculate a description or enumeration 

of the (in)feasible paths of a program
• Any brute-force approaches like executing or simulating 

the program with all possible input data are intractable
(the different values of input data are even more than 
different paths exist)

• Problem is shifted to the user: request for manual path 
descriptions (requires experts, high effort, is error-prone)

• Program analyzes with right abstractions help to reduce 
the needed manual code annotations.
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Program Annotations for WCET Analysis

• Explicit flow information 
required to guide WCET 
analysis:
– intractable program 

complexity
– description of execution 

modes or input data

scope
{

for (i=0; i<N; i++)
{

maximum N iterations;
for (j=0; j<i; j++)
{

maximum N iterations;
marker m1;

…
}

}
restriction m1 == N ∗ (N+1) / 2;

}
1 • fm1 == [N•(N+1)/2] • fSCOPE

flow variable

linear flow constraint

loop bound

loop bound
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Challenge: Correctness of Flow 
Information after Code Optimization
for (i=0; i<N; i++) 
maximum 10 iterations
{

f(i);
}

for (i=0; i<(N-2); i=i+3) 
{

f(i); f(i+1); f(i+2);
}
for (;i<N; i++) 
{
f(i);
}

loop unrolling 
(unrolling factor 3)

Q: what flow information is known of 
the transformed code?

additional knowledge  
assumed: N≤10

(flow fact given as 
code annotation)
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Challenge: Correctness of Flow Information after 
Code Optimization

for (i=0; i<N; i++) 
maximum 10 iterations
{

f(i);
}

scope {
for (i=0; i<(N-2); i=i+3) 
maximum 3 iterations
{

marker m1;
f(i);  f(i+1);  f(i+2);

}
for (;i<N; i++) 
maximum 2 iterations
{

marker m2;
f(i);

}
restriction 3*m1 + m2 <= 10;

}

loop unrolling 
(unrolling factor 3)

Automatic update of flow information in parallel to code transformation

additional knowledge  
assumed: N≤10

(flow fact given as 
code annotation)

linear flow constraint

flow variable

flow variable

loop bound

loop bound
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Universal Flow-Information Update
• We developed a framework that allows to update flow 

information for arbitrary code transformations using rules 
composed of the following operations:
– Update of loop bound information (          ):

(create, modify, or delete loop bound information)
– Update of flow constraints (          ):

(transform terms of the form “const • flowvariable” of a 
linear flow constraint into a new term respectively a sum 
of terms, creation of new flow constraints)

R

L
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Example: Loop Unrolling (3 Times)
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Example: Loop Unrolling (3 Times)
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Universal Flow-Information Update
Advantages:

• Manual code annotations:
Reduced cognitive complexity
(no need anymore to annotate machine code)

• Automatic calculation of flow information:
Platform-independent calculation with reduced effort 
(information more explicit available at source code)
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The State Explosion Problem
• Processor behavior modeling faces the problem of 

state explosion
– instruction timing depends on context 

(execution history)
– caches, pipelines, etc.
– even, when using the timing relevant dynamic 

processor state (TRDPS)
• The desired solution:

decompose the timing analysis problem using 
“divide and conquer”
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Series Decomposition
• Analysis on control-flow graphs instead on the set of 

execution traces
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Parallel Composition
• The execution time T(I,s) of an instruction sequence I

depends on the TRDPS s:
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Parallel Composition (TRDPS Partitioning)
Partitioning the TRDPS 

between HW component A 
and HW component B: 

TRDPS: A × B

Example:
A … cache state
B … pipeline state
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Example of Timing Anomalies
Is it that simple?

Using Newton’s world view together with 
an inadequate observation system may 

cause underestimation of the timing 
effects at a local system!
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Pitfall: Series Timing Anomalies
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Pitfall: Parallel Timing Anomalies
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Pitfall: Parallel Timing Anomalies
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Pitfall: Parallel Timing Anomalies
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Pitfall: Parallel Timing Anomalies
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Example of TA-S-A and TA-P-A
out-of-order pipeline + cache + data dependencies:
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Example of TA-S-I and TA-P-I
out-of-order pipeline + cache + data dependencies:
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Our Contribution so far against the 
State Explosion Problem
• Providing a precise definition of Timing Anomalies 

(formal but without unnecessary details)
• Formalizing the different types of decomposition 

techniques for WCET analysis
• Proofs of which types of TAs are incompatible with 

which type of decomposition technique

[Kirner,TR-01-2009], [Kirner,ECRTS’09]
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Measurement-Based Timing Analysis 
• Research project: ForTAS

(Formal Timing Analysis 
Suite)

• Cooperation with TU 
Darmstadt

• Learning the Hardware 
Timing Model by 
systematic execution time 
measurements
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The ForTAS Refinement Loop
• Testing for Timing Analysis

SUT

Environment

Model

Program

Measured Timed 
System (MTS)

Test Cases

Expected Time 
System (ETS)

0.3
0.2

0.4
0.7

Richer timing information than just WCET: 
probabilistic timing model
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The Next Steps:
Getting Out of the Complexity Mess 
• Take a pro-active approach to advance timing 

analysis: construction of embedded systems that 
support: 
– Predictability (with reasonable margins)
– Composability
– Scalability

• Predictable access to shared resources
• Timing-predictability requires a HW/SW co-design 

(“patterns of predictability”).
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Thank You!

http://costa.tuwien.ac.at http://www.fortastic.net


