
Timing Analysis of
Real-Time Software

Raimund Kirner

Vienna University of Technology
Austria

This is joint work with Peter Puschner and the CoSTA and
ForTAS project teams.

Grenoble, QA'09 2

From RTS Design to Implementation

T1

T4

T2 T3

t

Task set with precedence
constraints and deadline

T1 T2 T3 T4
t

Task sequence:
execution times,
response time

Can we guarantee that: response time < deadline?

Grenoble, QA'09 3

WCET: Timing Analysis Abstraction

T1 T2 T3 T4

T1 T2 T3 T4
t

In general it is infeasible to model all possible execution
scenarios and combinations of task execution times

T1 T2 T3 T4

T1 T2T3 T4

WCET analysis abstracts the different execution times of each
task to one single value WCET bound

Ti

Ti

xt < WCET

xt = WCET

Grenoble, QA'09 4

WCET vs. calculated WCET bound

BCET WCET

t

fr
eq

ue
nc

y

WCET Bound

Grenoble, QA'09 5

Remarks on WCET Analysis
• Computes upper bounds
• Bounds are application-dependent
• Assesses time that processor is actually executing

the code
• WCET result is hardware-dependent

WCET bounds must be safe
WCET bounds should be tight

Grenoble, QA'09 6

Requirements on WCET Analysis Tools
Find feasible abstractions and analysis methods such that:
1. development effort of WCET tool is affordable
2. the calculated WCET estimates are sufficiently precise
3. analysis problems are tractable with acceptable resource

requirements, and
4. the WCET tool is easy to use

Acceptance depends on application domain…

Tradeoffs required: there is no single WCET analysis
technique that is well-suited for all application domains!!

Grenoble, QA'09 7

The Path Problem
• The path problem: calculate a description or enumeration

of the (in)feasible paths of a program
• Any brute-force approaches like executing or simulating

the program with all possible input data are intractable
(the different values of input data are even more than
different paths exist)

• Problem is shifted to the user: request for manual path
descriptions (requires experts, high effort, is error-prone)

• Program analyzes with right abstractions help to reduce
the needed manual code annotations.

Grenoble, QA'09 8

Program Annotations for WCET Analysis

• Explicit flow information
required to guide WCET
analysis:
– intractable program

complexity
– description of execution

modes or input data

scope
{

for (i=0; i<N; i++)
{

maximum N iterations;
for (j=0; j<i; j++)
{

maximum N iterations;
marker m1;

…
}

}
restriction m1 == N ∗ (N+1) / 2;

}
1 • fm1 == [N•(N+1)/2] • fSCOPE

flow variable

linear flow constraint

loop bound

loop bound

Grenoble, QA'09 9

Challenge: Correctness of Flow
Information after Code Optimization
for (i=0; i<N; i++)
maximum 10 iterations
{

f(i);
}

for (i=0; i<(N-2); i=i+3)
{

f(i); f(i+1); f(i+2);
}
for (;i<N; i++)
{
f(i);
}

loop unrolling
(unrolling factor 3)

Q: what flow information is known of
the transformed code?

additional knowledge
assumed: N≤10

(flow fact given as
code annotation)

Grenoble, QA'09 10

Challenge: Correctness of Flow Information after
Code Optimization

for (i=0; i<N; i++)
maximum 10 iterations
{

f(i);
}

scope {
for (i=0; i<(N-2); i=i+3)
maximum 3 iterations
{

marker m1;
f(i); f(i+1); f(i+2);

}
for (;i<N; i++)
maximum 2 iterations
{

marker m2;
f(i);

}
restriction 3*m1 + m2 <= 10;

}

loop unrolling
(unrolling factor 3)

Automatic update of flow information in parallel to code transformation

additional knowledge
assumed: N≤10

(flow fact given as
code annotation)

linear flow constraint

flow variable

flow variable

loop bound

loop bound

Grenoble, QA'09 11

Universal Flow-Information Update
• We developed a framework that allows to update flow

information for arbitrary code transformations using rules
composed of the following operations:
– Update of loop bound information ():

(create, modify, or delete loop bound information)
– Update of flow constraints ():

(transform terms of the form “const • flowvariable” of a
linear flow constraint into a new term respectively a sum
of terms, creation of new flow constraints)

R

L

Grenoble, QA'09 12

Example: Loop Unrolling (3 Times)

B1

C’

D

E

A’

S

B3

B4

C

S

B

AL1

L1

L2

B20:10

?:?

?:?

Grenoble, QA'09 13

Example: Loop Unrolling (3 Times)

B1

C’

D

E

A’

S

B3

B4

C

S

B

AL1

L1

L2

B2

=

Σ 3
0:10

0:2

0:3

n·fAS n·fDS
R

n·fAB 3n·fA’B1 + n·fDB4
R

〈L1,0:10〉 〈L1,0:3〉, 〈L2,0:2〉L

Grenoble, QA'09 14

Universal Flow-Information Update
Advantages:

• Manual code annotations:
Reduced cognitive complexity
(no need anymore to annotate machine code)

• Automatic calculation of flow information:
Platform-independent calculation with reduced effort
(information more explicit available at source code)

Grenoble, QA'09 15

The State Explosion Problem
• Processor behavior modeling faces the problem of

state explosion
– instruction timing depends on context

(execution history)
– caches, pipelines, etc.
– even, when using the timing relevant dynamic

processor state (TRDPS)
• The desired solution:

decompose the timing analysis problem using
“divide and conquer”

Grenoble, QA'09 16

Series Decomposition
• Analysis on control-flow graphs instead on the set of

execution traces

Grenoble, QA'09 17

Parallel Composition
• The execution time T(I,s) of an instruction sequence I

depends on the TRDPS s:

Grenoble, QA'09 18

Parallel Composition (TRDPS Partitioning)
Partitioning the TRDPS

between HW component A
and HW component B:

TRDPS: A × B

Example:
A … cache state
B … pipeline state

Grenoble, QA'09 19

Example of Timing Anomalies
Is it that simple?

Using Newton’s world view together with
an inadequate observation system may

cause underestimation of the timing
effects at a local system!

Grenoble, QA'09 20

Pitfall: Series Timing Anomalies

Grenoble, QA'09 21

Pitfall: Parallel Timing Anomalies

Grenoble, QA'09 22

Pitfall: Parallel Timing Anomalies

Grenoble, QA'09 23

Pitfall: Parallel Timing Anomalies

Grenoble, QA'09 24

Pitfall: Parallel Timing Anomalies

Grenoble, QA'09 25

Example of TA-S-A and TA-P-A
out-of-order pipeline + cache + data dependencies:

Grenoble, QA'09 26

Example of TA-S-I and TA-P-I
out-of-order pipeline + cache + data dependencies:

Grenoble, QA'09 27

Our Contribution so far against the
State Explosion Problem
• Providing a precise definition of Timing Anomalies

(formal but without unnecessary details)
• Formalizing the different types of decomposition

techniques for WCET analysis
• Proofs of which types of TAs are incompatible with

which type of decomposition technique

[Kirner,TR-01-2009], [Kirner,ECRTS’09]

Grenoble, QA'09 28

Measurement-Based Timing Analysis
• Research project: ForTAS

(Formal Timing Analysis
Suite)

• Cooperation with TU
Darmstadt

• Learning the Hardware
Timing Model by
systematic execution time
measurements

Grenoble, QA'09 29

The ForTAS Refinement Loop
• Testing for Timing Analysis

SUT

Environment

Model

Program

Measured Timed
System (MTS)

Test Cases

Expected Time
System (ETS)

0.3
0.2

0.4
0.7

Richer timing information than just WCET:
probabilistic timing model

Grenoble, QA'09 30

The Next Steps:
Getting Out of the Complexity Mess
• Take a pro-active approach to advance timing

analysis: construction of embedded systems that
support:
– Predictability (with reasonable margins)
– Composability
– Scalability

• Predictable access to shared resources
• Timing-predictability requires a HW/SW co-design

(“patterns of predictability”).

Grenoble, QA'09 31

Thank You!

http://costa.tuwien.ac.at http://www.fortastic.net

