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Abstract—We present a compositional approach to formally verify
quality-of-service (QoS) properties of network-on-chip (NoC) designs.
A major challenge to scalability is the need to verify latency bounds
for hundreds to thousands of cycles, which are beyond the capacity
of state-of-the-art model checkers. We address this challenge by a
compositional form of k-induction. The overall latency bound problem
is divided into a number of sub-problems, termed latency lemmas. Each
latency lemma states that a packet spends a smaller number of cycles
at a particular “stage” of progress. We present a partially-automated
method of computing these stages based on the topology of the
network and a subset of relevant state, and verify the latency lemmas
using k-induction. The effectiveness of this compositional technique is
demonstrated on illustrative examples as well as an industrial ring
interconnection network.

I. INTRODUCTION

Network on chip (NoC) is a paradigm for communication within
large many-core system on chip (SoC) designs. An NoC archi-
tecture is a network of interconnected nodes, where each node
has networking logic and is associated with a processor core,
memory controller, specialized IP block, etc. Industrial examples
include the Tilera TILE64TM processor [1], STI Cell BE [2], and
Intel Larrabee [3]. NoCs typically offer quality of service (QoS)
guarantees on worst case latency, jitter, and throughput for some
classes of network traffic. QoS violations are often similar to
starvation and deadlock scenarios and can be easily missed in
performance simulation.

High-level modeling of NoCs [4], [5] and automatic abstraction [6]
help to hide unnecessary details, easing the way for formal analysis.
Even so, verifying QoS properties can be challenging for industrial
NoC designs, both due to the scale of the design and the property
to be verified. Consider for instance the problem of proving an
upper bound on the latency of sending a packet from one node in
the network to another. In principle, this property can be expressed
in linear temporal logic (LTL), and the problem can be solved
using model checking. The LTL property expresses a bounded
liveness property, written in English as “every packet from source
A gets to its destination B within N cycles.” Bounded liveness
is essentially a safety assertion where one adds some extra logic
to track the progress of time. One can use state-of-the-art model
checking strategies such as k-induction [7], interpolation [8], and
IC3/property-directed reachability (PDR) [9], [10] to verify this
property. However, regardless of the strategy, it is necessary to
analyze at least N consecutive cycles to either prove or disprove
the latency bound, assuming that N is tight. Typical latency
bounds for NoCs can be in hundreds or thousands of clock cycles.
Unrolling of model transition relation to such depth is beyond
the capacity of state-of-the-art model checking engines. Property-
directed reachability [9], [10], while avoiding explicit unrolling of
the transition relation, still does not scale past tens of clock cycles.

In order to address this challenge, in this paper we use a tried-and-
tested approach in formal verification: compositional reasoning. In
compositional reasoning, one breaks up the overall proof obligation
(proving a latency bound of N cycles) into a number of “smaller”
proof sub-goals, which are much easier to verify, such that if all of
the sub-goals are proved, then so is the original property. The key
is to devise a decomposition that is well-suited to the verification
task at hand. A natural approach for latency bounds is to first prove
smaller bounds on a packet’s progress through the network; e.g.,
how long does it take to inject a packet into the network, how much
time does it spend along a particular subpath, etc. We term these
proof sub-goals latency lemmas. Methods to discover and apply
them are the core contributions of this paper.

Specifically, we show that for some common network topologies,
one can enumerate finitely many stages that a packet can go
through. Each location in the network belongs to at least one stage
at every time moment. Stages are arranged into a directed, acyclic
stage graph, to capture the order in which they can be visited by
a packet. A latency lemma bounds the number of cycles between
when a packet is injected into the network and when the same
packet exits some particular stage. By proving the latency lemmas
for all stages, one proves the bounds corresponding to all paths
through the network.

To summarize, we make the following novel contributions in this
paper:

• A compositional approach to proving latency bound properties
in NoCs by decomposition into latency lemmas.

• Methods of formulating latency lemmas using a stage graph
based on the topology of the network and control state.

• Experimental results on two illustrative examples show that our
approach can reduce the runtime of inductive verification of
latency bounds by 4x-55x, and reduce the runtime of the state-
of-the-art IC3/PDR technique by 2x. However using k-induction
to verify latency with lemmas added gives a 8x-15x overall
reduction in runtime relative to verifying the same property
using PDR.

• Experimental results on an industrial-style ring interconnection
network show that latency lemmas give a significant speedup,
and in all cases allow latency bounds to be proved inductively.
Several variants of the ring can only be verified within the
allotted runtime when latency lemmas are used.

The rest of the paper is organized as follows. Sec. II introduces
basic terminology and sketches our approach using a simple
example. Sec. III describes our compositional approach in detail.
Sec. IV describes our strategy for creating a stage graph. Results
for illustrative examples are presented in Sec. V, and for the ring



network in Sec. VI. Related work is presented in Sec. VII and we
conclude in Sec. VIII.

II. PRELIMINARIES

A. Background

We describe NoC designs using a high-level modeling formalism
called executable micro-architectural specifications (xMAS mod-
els) [4]. xMAS models are compositions of simple primitives,
communicating over channels. Each channel c is a communication
link between an initiator primitive and a target primitive, and
comprises three signals c.data, c.irdy, and c.trdy. The initiator
controls c.data and c.irdy, while the target controls c.trdy. Data
is transferred from initiator to target whenever c.irdy and c.trdy
are both asserted during the same cycle. A channel c is said to be
blocked (by the target) when c.irdy is asserted and c.trdy is not.
A channel c obeys a liveness bound x if temporal logic formula
c.irdy =⇒ F≤x c.trdy holds, where F is the temporal operator
“Eventually”. A liveness bound of x = 0 means that a channel never
blocks. A channel c is persistent if c.irdy, once asserted, remains
asserted until an eventual transfer occurs [11].

An xMAS model of an NoC N is a tuple 〈I ,O,B,C , Init〉
where

• I is a finite set of input signals or sources;
• O is a finite set of output signals or sinks;
• B is a finite set of first-in first-out (FIFO) buffers;
• C is a finite set of arbitrary logic components, and
• Init is a set of initial states.

Each buffer b ∈B comprises one or more buffer slots, and every
slot in network N is indexed by a unique identifier i. The
components c ∈ C are stateful or stateless xMAS primitives. Due
to lack of space, we provide here only brief descriptions of the
subset of xMAS components that we use. The interested reader is
referred to [4].

1. Queue: parametrized by its number of slots k. Packets are read
from the fixed head slot, and written to tail position that varies
with the number of packets stored in the queue. When a packet
is read from the head slot, all other packets in the queue advance
to the next slot.

2. Source: a source non-deterministically attempts to send a packet
through its output channel o. Alternatively, an eager source
attempts to send a packet on every cycle. The data of the injected
packet is also non-deterministic.

3. Sink: a sink non-deterministically consumes a packet from its
input channel i. An eager sink attempts to consume a packet
on every cycle. Finite latency bounds require that sinks cannot
indefinitely block traffic. We therefore enforce that packet sinks
guarantee their input channels to obey bounded liveness. A
bounded live sink is parameterized by x, the liveness bound
that it guarantees for its input channel i.1

1Sinks are assured of satisfying liveness bounds by their transition
relations; if the current cycle would be the xth consecutive cycle in which
i.irdy∧¬i.trdy, then the sink is forced to assert i.trdy.

4. Fork: parameterized by functions f and g, consumes a packet
from i and produces both a = f (i) and b = g(i);

5. Join: parameterized by function h, consumes a packet from both
inputs a and b and produces output o = h(a,b);

6. Switch: parameterized by a switching function s, consumes a
packet from i and produces it on a if s(i) = true, and on b
otherwise;

7. Merge: arbitration primitive that consumes an input packet from
either a or b, and produces the same packet on o. A state bit u
stores the arbitration priority among the inputs, and its updation
ensures local fairness.
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Fig. 5. A key showing the symbols for the various primitives used to model microarchitectural blocks. Section II describes these components in detail. The
italicized letters (k, f , e, g, h and s) indicate parameters. Whenever we use these primitives in a diagram we need to specify values for these parameters.
Often, to avoid clutter we do not show these values explicitly trusting that they are clear from the context. In contrast, the gray letters (i, o, a, and b) in this
figure only indicate port names and are only shown to help you understand the formal definitions in Section II. Observe that for some components such as
the fork, we place the parameter close to the “corresponding” port in the diagram.

o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as

source

o

e

sink

i

fork

i
a

b

f

g

join

a

b
o
h

i

switch

a

b

sf

i o

function

k

i o

queue

a

b
o

merge

Fig. 5. A key showing the symbols for the various primitives used to model microarchitectural blocks. Section II describes these components in detail. The
italicized letters (k, f , e, g, h and s) indicate parameters. Whenever we use these primitives in a diagram we need to specify values for these parameters.
Often, to avoid clutter we do not show these values explicitly trusting that they are clear from the context. In contrast, the gray letters (i, o, a, and b) in this
figure only indicate port names and are only shown to help you understand the formal definitions in Section II. Observe that for some components such as
the fork, we place the parameter close to the “corresponding” port in the diagram.

o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as
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o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns
the value of its (boolean) argument in the previous cycle
and the value 0 in the very first cycle [1]; and oracle is an
unconstrained primary input that is used to model the non-
determinism of the source in the synchronous model. (Each
source has its own oracle.) We define o.irdy in this specific
manner to keep it persistent regardless of the oracle behavior:
i.e. once a source makes a value available on the channel, it
preserves that value until a transfer.

Dually, a sink is a component which non-deterministically
consumes a packet. It has one input port i and is characterized
by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

For model checking liveness properties, it is necessary to
put fairness constraints on the oracles of sinks to rule out those
traces where the oracle stays constant zero. In Linear Temporal
Logic (LTL) this would be (GF oracle).3 Also, occasionally
it may be necessary to put a similar fairness constraint on a
source (e.g. see Section III-B). We call such sources fair.

Sometimes it is convenient to have sources and sinks that
are always ready i.e. o.irdy = 1 (for a source) and i.trdy = 1
(for a sink). We call these eager. However, even for non-eager
sources and sinks, it is natural to associate rates to control how
often they attempt to inject or consume packets. Furthermore,
these rates translate trivially into probabilities that the oracle
associated with a source or a sink is 1 in any given cycle.
This permits one to automatically generate a random test-
bench to drive the oracles in simulation. We have found it
very convenient to generate such random test-benches when
generating Verilog from our models. They help with quick
sanity checks and enable quick performance validation. (Rates
are not used for model checking.)

Finally, one can imagine more complex sources that emit
arbitrary values from a given set. However, for the rest of this
paper it will suffice to consider only previously defined simple
sources which emit constant values.

D. Synchronization

A fork is a primitive with one input port i : α and two
outputs ports a : β and b : γ parameterized by two functions
f : α → β and g : α → γ. Intuitively, a fork takes an input
packet and creates a packet at each output. It coordinates the
input and outputs so that a transfer only takes place when

3G stands for “globally” (i.e. always) and F for “in future” (i.e. eventually).

the input is ready to send and both the outputs are ready to
receive. Formally,

a.irdy := i.irdy and b.trdy a.data := f (i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α
and b : β and one output port o : γ. It is parameterized by a
single function h : α × β → γ. Intuitively, a join takes two
input packets (one at each input) and produces a single output
packet. It coordinates the inputs and output so that a transfer
only takes place when the inputs are ready to send and the
output is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.trdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

Note the duality of the join equations with the fork equations
for the irdy and trdy signals.

E. Switching

A switch is a primitive to route packets in the network.
It consists of one input port i and two output ports a and
b, all of type α. It is parameterized by a switching function
s : α → Bool. Informally, the switch applies s to a packet x
at its input, and if s(x) is true, it routes the packet to port a,
and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(i.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

F. Arbitration

Arbitration is modeled by a merge primitive that selects
one packet among multiple competing packets. A merge has
multiple input ports and one output port. Requests for a shared
resource are modeled by sending packets to a merge, and a
grant is modeled by the selected packet.

For simplicity we present here a complete definition of a
two-input merge that has two input ports a : α and b : α and
one output o : α.

o.irdy := a.irdy or b.irdy
o.data := a.data if u and a.irdy

b.data if not u and b.irdy
a.trdy := u and o.trdy
b.trdy := not u and o.trdy

where u is a local Boolean state variable to ensure fairness.
We could choose a specific fairness algorithm such as

Figure 1: The set of XMAS primitives. Inputs and outputs are
written in gray and the parameters of the primitives are written in
black [4].

B. Sketch of Approach

A single state of the network includes a snapshot of the packets
that may occupy each queue slot, and various bits of control state.
From such a snapshot, our approach conjectures an upper bound on
how long each packet has been in the network, based on its location
in the network or designated state variables. These conjectures are
termed latency lemmas, and described formally in Section III.

We sketch our approach using a very simple network: a queue
of depth 5 between a non-deterministic source and an eager sink
(Fig. 2). Our approach uses a conservative compositional technique
to verify a latency bound of 6 cycles by using one latency lemma
for each queue slot to assert the following conditions.

• Any packet in slot 1 is less than 2 cycles old.
• Any packet in slot 2 is less than 3 cycles old.
• Any packet in slot 3 is less than 4 cycles old.
• Any packet in slot 4 is less than 5 cycles old.
• Any packet in slot 5 is less than 6 cycles old.

The conjunction of the latency lemmas implies a global latency
bound of 6 cycles because the lemmas cover all possible locations
of a packet, and all of the bounds are less than or equal to 6 cycles2.

source! sink!1! 2! 3! 4! 5!

chain_example,

Figure 2: Example of a queue with 5 slots.

The efficiency of our approach comes from the implicit compos-
ability of the latency lemmas. If all lemmas hold in one cycle,
then the transition relation of the network ensures that they will

2Note that the overall latency bound of 6 cycles is loose. The eager sink
prevents the queue from ever filling more than one slot (slot 5), so the
worst achievable latency is 1 cycle.
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Figure 3: Correspondence between network N and stage graph G.

also hold in the next cycle. The conjunction of all latency lemmas
comprises an inductive invariant for the age of all packets. As an
inductive invariant, the property can be verified efficiently without
a high degree of unrolling. While this toy example might be
verified using (one-step) induction, in general we construct sets of
composable lemmas that are verifiable with k-induction. The values
of k are small on account of the latency lemmas each describing
only a small increment of progress. Useful latency lemmas can
be automatically discovered in many acyclic networks, and can be
discovered with the help of manual insight in cyclic networks.

III. FORMALISM

As sketched in the previous section, we use a set of conjectured
latency lemmas in order to efficiently verify a bound on the end-
to-end latency from any source in the network to any sink.

The model being verified is xMAS model N . We assign a unique
index i to every queue slot in the network, and let variable qi refer to
the content of the ith queue slot. The complete state of a network
N with L total queue slots comprises variables q0,q1, . . . ,qL−1
representing slot contents, and some additional control variables.

A. Mapping from N to G

Let graph G = (S,E) be an acyclic digraph, with its vertices
s0,s1, . . . ,sM ∈ S called stages. Each stage corresponds to a latency
lemma. Queue slots in N map to stages in G depending on state;
all sinks in N map to special stage s0. If a slot i maps to stage j,
then it means that slot i is subject to the jth latency lemma. There
exists an edge e j,k ∈ E if a packet can occupy slots in N that map
to stages s j and sk in consecutive cycles.

In each state of execution, every queue slot in N that stores a
packet is mapped to some stage in G (Fig. 3). A single queue
slot can map to different stages depending on the state of certain
variables, but always maps to exactly one stage unless the slot is
empty. The mapping is defined using a set of formulas pi, j. Each
formula refers to a particular slot i in N and stage s j ∈G, and is
true if the packet in slot i maps to stage s j. In other words, pi, j is
the Boolean function defining conditions under which slot i maps
to stage j, and the function takes as inputs variables qi ∈ Qi and
c ∈C.

Latency lemmas for a given slot are forbidden from considering
the contents of any other slots so as to avoid the corresponding
blow-up in the number of stages of G. This restriction on the form
of latency lemmas can introduce looseness in the latency bounds
by forcing each packet to always make conservative assumptions
about other traffic.

pi, j : Qi×C 7→ B (1)

• Qi is the set of states of queue slot i.
• C is the set of states of the control variables used to enforce fair-

ness, including priority bits of merge primitives and reservation
states of control logic.

A few special cases are worth mentioning. If slot i can never map
to stage s j then pi, j = false regardless of qi and c. If slot i always
maps to stage s j, then pi, j = true, regardless of qi and c. We say
some combination of slot i and states (qi,c) are covered by stage
s j if formula pi, j = true for (qi,c). Alternatively, we sometimes
say that a packet is covered by s j if it resides in the slot i at a time
when pi, j is true.

All packets in all reachable states should be covered by some stage
in G during every cycle. For each slot i, assume the existence of a
specification variable usedi that is true in every state where slot i
stores a packet. A coverage property X is defined as true if every
used slot i in N maps to at least one stage in G.

X :=
∧

i∈[0,L−1]

usedi =⇒

 ∨
s j∈S

pi, j


B. Latency Lemmas to Imply Global Latency Bound

The xMAS model N is augmented with a global clock and packet
timestamps to allow latency bounds to be evaluated as safety
properties over single states. The current time clk and the injection
timestamps t(qi) are specification variables in the xMAS model.
Variable clk is the state of an n-bit counter that increments during
every cycle. The timestamp is created by appending the current
value of clk to every packet when it is first injected from a source
into the network. When a packet occupies slot i, its timestamp t(qi)
is part of the slot’s state qi. Each queue slot in N is therefore
widened by n-bits to accommodate the packet timestamps.

The global latency bound property and the latency lemmas both
assert claims about the age of a packet. The age of the packet in
slot i (denoted age(qi)), is the difference between the current time
and the packet’s timestamp (Eq. 2). Property ΦG (Eq. 3) asserts that
no packet has an age of TV ER. Latency lemma φ j (Eq. 4) asserts
that any packet in a slot i that satisfies pi, j (i.e. maps to stage s j)
has an age less than Tj. Property ΦL (Eq 5) asserts that all latency
lemmas hold.

age(qi) := (clk− t(qi)) mod 2n (2)

Φ
G :=

∧
i∈[0,L−1]

(usedi =⇒ age(qi) < TV ER) (3)

φ j :=
∧

i

(
pi, j =⇒ age(qi) < Tj

)
(4)

Φ
L :=

∧
j

φ j (5)



Latency lemmas are helpful because their composable nature allows
them to be verified without a large number of unrollings. While
the packet timestamps are ostensibly added to a packet when it is
injected, the general initial state of induction allows for packets to
exist without being injected3. Because the latency lemmas constrain
the age of packets at intermediate stages of progress, it is not
necessary for the verifier to unroll the circuit to a depth that is
proportional to the total path latency. Each lemma can essentially
ignore the prefix path, and assert an age bound building only
upon the lemmas of direct predecessor stages. This simplification
provides a large reduction in the number of unrollings required
and in the solver runtime, but could introduce looseness into the
verified bounds.

C. Automated Invariant Strengthening

An advantage of using the xMAS formalism is automated invariant
strengthening. The automatically generated invariants are unrelated
to QoS, but are useful to block the verifier from exploring unreach-
able states. The set of inferred invariants is denoted Ψ, and can in-
clude numeric invariants [5] and channel persistency invariants [11]
among others. This work uses channel persistency invariants, non-
blocking invariants on selected channels, and invariants to specify
that the head and tail pointer of each queue are consistent with the
number of items stored in it.

Including the automated invariants and latency lemmas, the total
verification problem becomes N � ΦL ∧Ψ∧ΦG. The approach
is sound because the verified property is a strengthening of the
original latency property ΦG.

IV. RULES FOR CONSTRUCTING STAGE GRAPH

The pi, j formulas that define latency lemmas can be chosen
to be more abstract or precise, and we do not offer a scheme
for choosing an optimal level of abstraction. Two extreme cases
must be avoided in defining these formulas. A mapping that is
unnecessarily precise may induce too large a stage graph G. A
mapping that is too abstract can induce a cyclic graph, or a graph
where single stages are too large to serve as effective sub-goals.
Our approach is to define the mapping as abstractly as possible
using simple mechanical rules, and to refine the mapping by case-
splitting on fairness variables whenever graph G is cyclic or its
sub-goals are too large.

A. Propagating Liveness Bounds in N

Latency depends largely on blocking caused by congestion. In an
xMAS network, bounded liveness properties assert limits on the
amount of blocking that can occur. Starting from the given liveness
bounds of packet sinks in N , simple rules back-propagate the
liveness bounds across primitives to obtain finite liveness bounds
for other channels.

For any persistent channel c, let dt(c) represent its liveness bound,
or stated differently a bound on the number of consecutive cycles
in which the channel can be blocked. A claim of dt(c) = 2 is
then just a compact notation for temporal logic formula c.irdy =⇒

3These packets would have been injected prior to the current k frames
of unrolling

F≤2c.trdy. For a non-blocking channel, dt(c) = 0. The liveness
bounds dt(c) are not explicitly verified, but are instead only used
as a tool toward calculating the residence times of the stages in G.
The rules to propagate liveness bounds through primitives to other
channels are as follows:

1. Sink: For a sink with a liveness bound of x, dt(i) = x
2. Queue: For a queue dt(i) = dt(o), indicating that the queue

itself does not add any backpressure beyond the backpressure
from its output channel.4

3. Merge: In a fair merge primitive no input is ever blocked
through a time period when the other merge input is granted
twice, therefore dt(a) = dt(b) = 2dt(o)+1.

4. Switch: Without considering which output a packet
will be routed to, a conservative bound is given by
dt(i) = max(dt(a),dt(b)).

B. Age Bounds of Stages in G

The liveness bounds of the previous subsection are a step toward
discovering an age bound (Tj) for each latency lemma φ j. Let the
maximum number of consecutive cycles during which a packet can
map to stage j be called the residence time of stage j, denoted by
w j. If a queue slot i is the head of a queue primitive, and is the only
slot that stage j can cover, then w j is one greater than the liveness
bound on the output channel of the queue. Every stage covering
another slot of this queue is assigned the same residence time,
since non-head packets will advance within the queue whenever
the head packet departs the queue (see Fig. 4). The age bound Tj
for a packet in any stage j is one greater than the sum of all the
residence times along the longest path to stage j (including j’s own
residence time w j).

For topologically acyclic networks using the xMAS components
listed above, the back-propagation scheme deduces liveness bounds
for all channels and maximum delays for each queue slot. The age
bounds Tj can be obtained by dynamic programming in this acyclic
case, as demonstrated in the tree saturation example of Subsec. V-C.

In cyclic networks, dynamic programming generates infinite Tj
for any stage j that is part of a cycle in G. The cycle can be
eliminated by refining the stages using case-splitting on some
fairness variables. A network that can guarantee finite latency may
always have some refinement that produces an acyclic stage graph,
but we make no claim about finding it automatically. In the ring
example of Sec. VI, we find that the fairness mechanisms used to
ensure finite latency are useful for verifying finite latency bounds.
Automation of this refinement step is left to future work. The
ring of Sec. VI is an example of a cyclic network that requires
refinement. A similar refinement step can also be used to reduce
the residence times of stages in acyclic networks, as is shown in
the tree saturation example (Subsec. V-C).

V. ILLUSTRATIVE EXAMPLES

Several illustrative examples are used to highlight strengths and
weaknesses of the proposed approach. The first example is a

4A special case exists when a queue has size 1, disallows simultaneous
read and write, and has an eager output channel. Under those conditions,
dt(i) = 1 and dt(o) = 0.



single queue to introduce the approach, and the second shows
how refinement can be used to reduce induction depth. In these
two examples, TV ER can be obtained mechanically with no manual
insight required. The ring network in Sec. VI will show an example
where insight is required.

A. Experiment Methodology

The methodology used across all experiments is described here.
The xMAS models are written in word-level Verilog, with param-
eterized modules implementing the xMAS primitives. The Verilog
is bit-blasted into an and-inverter-graph5 (AIG) using the VeriABC
flow [12]. Verification is performed on the AIG using the bit-level
model checker ABC [13]6 on a 2.4GHz Intel Core i5 processor
with 4GB of RAM. Both k-induction7 and property directed
reachability8 (PDR) [10] are performed by ABC. The networks
used in experiments are available online in both Verilog and AIG
format.9

Note that verification using k-induction consists of a base-case of
k frames of bounded model checking and an inductive step of k
frames. When attempting to verify a property with k-induction,
we do not know in advance what value of k will be necessary.
We therefore take the conservative approach of allowing the base
case to explore a large number of frames kmax, and only learn k
after the verification terminates. Note that in all cases kmax ≥ k. To
avoid letting the arbitrary choice of kmax skew the runtimes, we
report only the runtime for the inductive step. The runtime of the
inductive step is usually orders of magnitude larger than for the
base case.

The tightness of TV ER in each example is quantified using bounded
model checking (BMC). Let TCEX be the largest latency for which
BMC can find a counterexample within some allotted resource
limits. The smallest latency that can possibly be a valid latency
bound is then TCEX + 1. Therefore, the maximum amount by
which TV ER over-approximates the tightest possible latency bound
is TV ER− (TCEX +1). The determination of TCEX for all examples
is given in Table IX in the appendix.

B. Single Queue

A queue of depth 5 is shown in Fig. 4, along with its stage graph
G. The sink obeys a liveness bound of 2 cycles, while the source is
completely non-deterministic. Each queue slot maps to one stage
(Table I), and the age bound (Tj) for each stage is 3 cycles larger
than for the preceding stage.

The k-induction and PDR engines in ABC are both used to
verify the latency (Tab. II). The first property is a conjunction of
the latency lemmas (ΦL), the automatically generated invariants
(Ψ), and the global latency bound (ΦG). K-induction verifies this
property 12X faster than does PDR. When latency lemmas are
removed from the property, the runtimes of both engines are
increased. Regardless of the engine used, strengthening the global

5http://fmv.jku.at/aiger
6Rev. d0170182dbd6; at http://www.eecs.berkeley.edu/∼alanmi/abc/
7ABC commands ”read aiger foo.aig; bmc3 -F kmax; orpos; ind -F kmax;”
8ABC commands ”read aiger foo.aig; pdr -v;”
9http://www.eecs.berkeley.edu/∼holcomb/memocode12 xmas.tar.gz
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Figure 4: Queue with a sink obeying a liveness
bound of 2 cycles, and corresponding stage
graph G.

j w j Tj pi, j(qi,c)
1 3 16 p5,1 := true
2 3 13 p4,2 := true
3 3 10 p3,3 := true
4 3 7 p2,4 := true
5 3 4 p1,5 := true

Table I: Graph G from Fig 4. The index of each
stage is j. The residence time of each stage is
w j. The age bound of each stage is Tj. Formulas
pi, j define the mapping from N to G.

latency property using latency lemmas appears to create an easier
verification problem.

Runtime (s) Frames Proved Engine Property
1.24 5 Y kind ΦL ∧Ψ∧ΦG

4.50 17 Y kind Ψ∧ΦG

15.31 47 Y pdr ΦL ∧Ψ∧ΦG

41.96 45 Y pdr Ψ∧ΦG

129.00 53 Y pdr ΦG

Table II: Results for a queue of depth 5 and sink with liveness
bound 2 (Fig. 4). In this example, TV ER = 16 and TCEX = 14
(Tab. IX).

1) Varying Queue Depth: Next we repeat the verification of
property ΦL∧Ψ∧ΦG for different queue depths. In each case, the
stage graph is modified according to the queue depth. The results
are shown in Table III. Regardless of the queue depth, only 5 frames
are required to verify the property using k-induction, because each
latency lemma builds upon the lemmas for the other stages. The
number of frames required by PDR generally increases with the
queue depth.

K-ind PDR
Depth Frames Run Time Frames Run Time

2 5 0.03 35 1.01
3 5 0.10 39 3.18
4 5 0.49 49 8.04
5 5 1.25 47 15.31
6 5 2.12 49 30.39
7 5 5.72 54 49.98
8 5 10.30 67 93.19

Table III: The runtime to verify N � ΦL ∧Ψ∧ΦG for different
queue depths using k-induction and PDR.

2) Proving Lemmas in Isolation: A final experiment on a single
queue is performed in order to investigate whether proving the

http://fmv.jku.at/aiger
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~holcomb/memocode12_xmas.tar.gz


Property Frames Run Time Proved
ΦL 5 1.12 Y
φ5 5 0.04 Y
φ4 8 0.10 Y
φ3 11 0.26 Y
φ2 14 0.56 Y
φ1 17 0.98 Y

1.94

Table IV: Using k-induction, the cumulative runtime for checking
each latency lemma in isolation exceeds the runtime for checking
the conjunction of all lemmas. 1.94 seconds is the cumulative
runtime for the individual lemmas.

conjunction of latency lemmas (ΦL) is easier than proving each
one (φ j) in isolation. The results are shown in Table IV. In each
case, the lemmas are strengthened by Ψ. The cumulative runtime
for verifying each lemma individually exceeds the runtime for
verifying all lemmas together. The lemmas for later stages of
progress require a larger number of frames to prove in isolation
because they lack any information about the age of packets entering
the stage. When all lemmas are verified together, the age of a packet
entering the stage is bounded by the lemma of the previous stage.

C. Tree Saturation

Fig 5 shows a network that can suffer from tree saturation, even
though both sinks are designated as non-blocking. The liveness
bounds shown above each channel of the network are obtained
using the propagation scheme of Subsec. IV-A. The channel live-
ness bounds and the residence times of corresponding stages grow
quadratically with the number of merge primitives between the
channel and the sink. The stage graph uncovered by this automated
procedure has a one-to-one correspondence between queue slots in
N and stages in G. The stage graph is shown above the network
in the figure, with the age bounds (Tj) annotated above each stage.
The stages (s10,s9) corresponding to two particular queue slots
(1,2) have residence times of 8 cycles each.

It is possible to reduce the largest residence times by refining the
stage graph. A packet can only reside in slot 1 or 2 for 8 cycles
if the merge primitive ahead of it transfers a packet from its other
input during this time; the priority bit u of the merge primitive
flips its state when this transfer occurs. We can therefore refine the
mapping of packets in slot 2 based on u. A packet can reside in
slot 2 for 4 cycles as the low-priority merge input, and 4 cycles
as the high-priority merge input; the high-priority case indicates a
more advanced stage of progress. The same type of refinement is
applied to slot 1. A packet in slot 1 is in a more advanced stage
of progress when the merge prioritizes its upper input, because it
will then reach slot 2 within 4 cycles. The refined stage mappings
are given in Table V and shown above the nominal stage graph in
Fig. 5. Note that the stages are defined conservatively according
to worst-case behaviors; a packet from a low priority merge input
can be transferred if the other merge input is idle.

The results for verifying the latency of Fig. 5 are given in Table VI.
Property ΦL′ asserts the latency lemmas of the refined stage graph.
The induction depth needed is reduced by 4 when the stages with
residence times of 8 cycles (s10,s9) are each replaced by multiple

Runtime (s) Frames Proved Engine Property

2.72 9 Y kind ΦL′ ∧Ψ∧ΦG

4.13 13 Y kind ΦL ∧Ψ∧ΦG

227.86 32 Y kind Ψ∧ΦG

36.14 58 Y pdr ΦL′ ∧Ψ∧ΦG

35.27 58 Y pdr ΦL ∧Ψ∧ΦG

73.91 72 Y pdr Ψ∧ΦG

88.45 74 Y pdr ΦG

Table VI: Results for example of Fig. 5. In this example, TV ER = 31
and TCEX = 26 (Tab. IX). Property ΦL′ asserts the refined latency
lemmas. Refining the lemmas reduces the induction depth required
to verify the bounds.

stages with residence times of 4 cycles (s10′′ ,s10′ ,s9′′ ,s9′ ). The
use of latency lemmas reduces the runtime for both PDR and k-
induction, and k-induction gives an 8x-15x speedup over PDR.
When latency lemmas are not used, k-induction must resort to a
larger number of unrollings and has 3x longer runtime than PDR.

VI. NON-STALLABLE RING INTERCONNECT

A ring network [14] is a topology used to route traffic among a
number of agents. Each agent (Fig. 6) comprises arbitration logic,
a ring buffer slot10, and ingress buffer slots. Packets reach their
destinations by moving around the ring until being granted access
to the ingress buffer of their destination agent. The general ring
network is configured by 3 parameters: the number of agents N,
the ingress buffer depth I of each agent, and the liveness bound R
on the sinks of each agent. Figure 6 shows a ring instance with
(N, I,R) = (3,2,1).

A packet being sent from agent i’s source to agent m’s sink is first
injected into the ring buffer of agent i. After entering agent i’s ring
buffer, the packet moves around the ring, requesting entry to the
ingress buffer whenever it arrives at agent m. If the request is not
granted, the packet bounces back onto the ring to repeat the request
next time it reaches agent m. The agents use unfair arbitration logic
to prioritize traffic in the ring over traffic attempting to enter the
ring. This ensures that traffic within the ring cannot be blocked,
but does permit sources to be blocked indefinitely. A naı̈ve ring
implementation can have infinite latency even if all sinks obey
bounded liveness. A single packet on the ring may never be granted
access to the ingress of its destination, despite an unbounded
number of other packets being granted access to the same ingress.

Receive reservations [15] are a type of mechanism to enforce
fairness. When combined with bounded liveness of sinks, receive
reservations guarantee that all packets have finite latency bounds.
The particular receive reservation scheme used by all agents is
described here:

1) If the agent’s reservation token is available, then the agent
issues it to any packet that is bounced (due to a full ingress).
The next ingress slot to become free will be reserved for this
packet.

10To avoid the extra cycle of backpressure that can be introduced by
queues of depth 1 with non-blocking outputs, the ring buffer slot is allowed
to be read and written during the same cycle.
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Figure 5: A network capable of tree saturation and the corresponding graph G. Channel
annotations on N are liveness bounds, and stage annotations on G are the age bounds Tj.

j w j Tj pi, j(qi,c)
1 1 31 p10,1 := true
2 1 30 p9,2 := true
3 2 5 p8,3 := true
4 2 3 p7,4 := true
5 2 29 p6,5 := true
6 2 27 p5,6 := true
7 4 25 p4,7 := true
8 4 21 p3,8 := true
9’ 4 17 p1,9′ := u
9” 4 13 p1,9′′ := ¬u
10’ 4 9 p1,10′ := u
10” 4 5 p1,10′′ := ¬u

Table V: Details of refined graph G
from Fig 5. The index of each stage
is j. The residence time of each
stage is w j. The age bound of each
stage is Tj. Formulas pi, j define the
mapping from N to G.

2) If the agent’s reservation token is outstanding, packets that
do not hold it are denied access to the ingress buffer, unless
the ingress buffer has more than 1 free slot.

3) When a packet with a receive reservation token is granted
access to the ingress buffer, the token is returned to the agent.

Receive reservations are fair with respect to packets in the ring.
Whenever one packet returns the reservation token, the packet
trailing it on the ring has a chance to make the reservation in
the subsequent cycle. Each packet in the ring gets a turn at making
a receive reservation in order.

The liveness bound of the sink is used as the basis for analytical
upper bound on the latency of the ring. Because each sink’s liveness
bound of R back-propagates to the ingress’ input channel, no
receive reservation can be held by one packet for more than Nd R

N e
cycles; if R < N for example, then any receive reservation that is
issued will be returned exactly N cycles later when the reserving
packet returns. Given that there are N total slots in the ring, an
analytical upper bound on the age of any packet in the ring is
given by tring in Eq. 6. An upper bound on the age of any packet
in the entire network is given by TV ER in Eq. 7. It is important to
note that the analytical bound used for TV ER is derived from the
high-level specification, but our approach allows it to be proved on
the bit-level (Verilog) implementation of the network.

tring = 1+N
(

1+N
⌈

R
N

⌉)
(6)

TV ER = I ∗ (R+1)+ tring (7)

Send reservation mechanisms [16] are a counterpart to receive
reservations for ensuring fairness in granting ring slots to sources,
but are not addressed in this work.

A. Generating a useful stage graph G

The existence of cyclic paths in N complicates the construction
of a stage graph, because the location of a packet within the

ring is not a sufficiently precise indicator of progress. To find
sub-goals for marking progress of packets circling the ring, we
refine the latency lemmas by case splitting on the state of receive
reservations. The refinement based on receive reservation priority
in the ring is analogous to the refinement based on merge priority
in Subsec. V-C.

Some notation is required for the mapping from N to G in the ring.
For each agent i∈ [0,N−1], let rsvi ∈ {⊥,0,1, . . . ,N−1} indicate
which of the N agents contains the ring slot holding the reservation
token of agent i. rsvi =⊥ indicates that the receive reservation is
available. For each queue slot j in N , let dst(q j) be the destination
address of the packet. The destination address is chosen for each
packet non-deterministically at the time of injection, and is stored
with the packet in the same manner as the timestamp t(q j).

Using an (N, I,R) = (3,2,1) ring as an example, the definition
and explanation of the sub-goal for each stage in G is given in
Table VII. We clarify notation by explaining the row of table VII
that is denoted by j = 4; this row gives the age bounds and mapping
conditions for stage 4. Only queue slot q6 can ever map to stage 4,
and it does so only when formula p6,4 is true. Formula p6,4 is true
if the packet in slot q6 has agent 2 for its destination and agent 2
has an available receive reservation. Stage 4 has a residence time
of 1 cycle. The packet mapping to stage 4 must have an age of
less than 4+2Nd R

N e.

B. Results

Our approach is evaluated on 4 different variants of the parame-
terized ring. The timeout for each verification experiment is 10k
seconds. The results are shown in Table VIII. Strengthening the
global latency property (ΦG) by latency lemmas (ΦL) and auxiliary
invariants (Ψ) allows the global latency bound of TV ER to be proved
by k-induction in all cases within 700 seconds using 13 frames or
less. The inclusion of latency lemmas also reduces the runtime of
PDR, but PDR is unable to verify 2 variants within the allotted
time even with latency lemmas included. The bounds proved in all
cases do not over-approximate the tightest possible bound by more
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Figure 6: Ring network with N = 3, I = 2, and corresponding graph G. The dashed arrows drawn from N to G
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j w j Tj pi, j(qi,c) Meaning of Stage j

1 R+1 2(R+1)+4+3N
⌈ R

N

⌉
p8,1 := true head of ingress

2 R+1 R+1+4+3N
⌈ R

N

⌉
p7,2 := true tail of ingress

3 N
⌈ R

N

⌉
4+3N

⌈ R
N

⌉ p9,3 := dst(q9) = 2 ∧ rsv2 = 2
Holds reservation tokenp6,3 := dst(q6) = 2 ∧ rsv2 = 1

p3,3 := dst(q3) = 2 ∧ rsv2 = 0
4 1 4+2N

⌈ R
N

⌉
p6,4 := dst(q6) = 2 ∧ rsv2 =⊥ 1st priority for reservation token

5 N
⌈ R

N

⌉
3+2N

⌈ R
N

⌉ p9,5 := dst(q9) = 2 ∧ rsv2 = 0
2nd priority for reservation tokenp6,5 := dst(q6) = 2 ∧ rsv2 = 2

p3,5 := dst(q3) = 2 ∧ rsv2 = 1
6 1 3+N

⌈ R
N

⌉
p3,6 := dst(q3) = 2 ∧ rsv2 =⊥ 2nd priority for reservation token

7 N
⌈ R

N

⌉
2+N

⌈ R
N

⌉ p9,7 := dst(q9) = 2 ∧ rsv2 = 1
3rd priority for reservation tokenp6,7 := dst(q6) = 2 ∧ rsv2 = 0

p3,7 := dst(q3) = 2 ∧ rsv2 = 2
8 1 2 p9,8 := dst(q9) = 2 ∧ rsv2 =⊥ 3rd priority for reservation token

Table VII: Graph G definitions for ring network with N = 3, I = 2, as shown in Fig 6. The index of each stage is j,
and the residence time is w j, and the age bound at each stage is Tj. The formulas that map N to G are pi, j(qi,c).
The formulas shown are only a subset of the formulas for each stage. In particular, they are the subset that can be
true when the destination of a packet is agent 2.

than 4 cycles. Table IX shows the BMC results used to evaluate
tightness (per methodology of Subsec. V-A).

• For the (N, I,R) = (3,2,1) ring, the inclusion of latency
lemmas gives a speedup in both PDR and k-induction. This
small ring variant is the only variant for which PDR can prove
the unstrengthened global latency.

• For the (N, I,R) = (6,2,2) ring, TV ER is at most 1 cycle loose.
Induction is able to prove the latency with and without latency
lemmas, while PDR can only prove the latency with latency
lemmas.

• For the (N, I,R) = (6,3,4) Both engines require latency lem-

mas to prove the latency, and k-induction gives a 7x speedup
over PDR.

• For the (N, I,R) = (7,3,3) the only successful approach is
k-induction with latency lemmas included.

VII. RELATED WORK

One way of addressing QoS guarantees at the architectural level
is to use resource reservation and contention-free routing [17].
Analysis can be performed manually, but formal verification is still
useful for providing guarantees.

Network calculus [18] has been demonstrated as a useful tool for



(N, I,R) TCEX TV ER Runtime (s) Frames Proved Engine Property

(3,2,1) 12 17

4.89 7 Y kind ΦL∧Ψ∧ΦG

15.36 16 Y kind Ψ∧ΦG

56.84 84 Y pdr ΦL∧Ψ∧ΦG

99.20 82 Y pdr Ψ∧ΦG

119.89 77 Y pdr ΦG

(6,2,2) 47 49

193.53 11 Y kind ΦL∧Ψ∧ΦG

377.73 51 Y kind Ψ∧ΦG

1874.63 152 Y pdr ΦL∧Ψ∧ΦG

10000.00 77 - pdr Ψ∧ΦG

10000.00 81 - pdr ΦG

(6,3,4)
55 58

364.69 13 Y kind ΦL∧Ψ∧ΦG

4838.04 61 Y kind Ψ∧ΦG

2555.98 149 Y pdr ΦL∧Ψ∧ΦG

10000.00 70 - pdr Ψ∧ΦG

10000.00 57 - pdr ΦG

(7,3,3)
66 69

656.46 13 Y kind ΦL∧Ψ∧ΦG

8573.73 71 Y kind Ψ∧ΦG

5960.78 165 Y pdr ΦL∧Ψ∧ΦG

10000.00 73 - pdr Ψ∧ΦG

10000.00 70 - pdr ΦG

Table VIII: Verifying global latency bound (ΦG) with and without latency lemmas (ΦL) and auxiliary invariants (Ψ)
for four different variants of the parameterized ring. Values of TCEX are from Tab. IX. The timeout is 10k seconds.

NoC performance analysis [19]. However, it has limited applica-
bility and precision for networks with backpressure and complex
circular message dependencies. Network calculus formalism relies
on very high-level abstraction of arbiters, often modeling them as
latency-rate servers. Recent abstraction-based formal approaches
have been applied to NoC components [6], but they only address
scalability problems arising from size of the network, rather than
from proving a large latency bound, while the present work
addresses the latter issue.

Several works have explored (unbounded) liveness verification
of communication fabrics. The standard approach of verifying
liveness using a liveness-to-safety transformation [20] does not
scale to large networks in practice [11]. Alternative approaches
include reducing deadlock conditions to a set of equations [11],
[21], and proving liveness using the help of intermediate safety
assertions [22].

Our verification approach is conceptually similar to ranking func-
tions [23], i.e. numeric functions of model state that measure
progress toward some goal. Typically, ranking functions are useful
in proving termination or liveness properties, but they are also
applicable for latency bounds. In fact, our stage graph can be
viewed as a structural description of a ranking function for the
model. Note, however, that stage graphs specify partial orders,
rather than the linear orders that are typical for ranking functions.

VIII. CONCLUSION

This work presents a compositional approach to verifying latency
bound properties of NoC designs. The key idea is to decompose
the overall proof into a finite number of latency lemmas, based on
the notion of stages that a packet can be in. The latency lemma

approach is applied to illustrative examples and an industrial ring
design. The approach facilitates inductive verification of latency
bounds, and also yields significant speedup when using the PDR
algorithm.
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APPENDIX: BOUNDED MODEL CHECKING

The results of Table IX show the set of experiments conducted to
obtain TCEX for each network N . For each N , TCEX is set to
be the largest T (shown in bold) for which a counterexample is
discovered by bounded model checking. All properties except for
ΦG are omitted in BMC. A linear search of T over the range
[0,TV ER] is performed; the linear search is chosen over binary
search to minimize the number of trials that have a potentially
expensive time-out. For each T that is tested, the BMC run ends
when one of the following conditions occurs:

1) A counterexample is found to show that T is an invalid
bound. The number of frames explored to find the coun-
terexample is shown.

2) 100 Frames of BMC are completed in less than 10k seconds
without finding a counterexample.

3) 10k Seconds have elapsed without finding a counterexample
and without completing 100 frames of BMC. As 100 frames
are not yet reached, the number of frames explored within
the 10k seconds is shown.

ex queue.v

T Found CEX Runtime(s) Frames
12 Y 0.76 18
13 Y 0.96 19
14 Y 1.66 21
15 - 2285.31 100

ex tree sat.v

T Found CEX Runtime(s) Frames
24 Y 21.30 27
25 Y 22.71 29
26 Y 30.83 30
27 - 2075.31 100

ring 321.v

T Found CEX Runtime(s) Frames
10 Y 0.93 12
11 Y 0.61 13
12 Y 0.68 14
13 - 22.76 100

ring 622.v

T Found CEX Runtime(s) Frames
45 Y 47.97 48
46 Y 37.67 49
47 Y 44.12 50
48 - 2253.03 100

ring 634.v

T Found CEX Runtime(s) Frames
53 Y 654.43 57
54 Y 521.73 58
55 Y 663.58 59
56 - 10000.00 64

ring 733.v

T Found CEX Runtime(s) Frames
64 Y 4188.26 68
65 Y 4174.52 69
66 Y 3657.55 70
67 - 10000.00 71

Table IX: Search with bounded model checking to discover TCEX
for each N
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