Stoichiometrically Minimal Source Pathways via Model Checking

Matthew Fong
EECS, UC Berkeley
mfong92@berkeley.edu

Sanjit A. Seshia
EECS, UC Berkeley
sseshia@eecs.berkeley.edu

ABSTRACT
We formulate the problem of finding stoichiometrically minimal source pathways (SMSPs) in biochemical metabolic graphs and present a model checking approach to solve it. SMSPs are paths whose source nodes correspond to native metabolites and which use a non-dominated amount of those compounds. Our approach allows one to eliminate inefficient pathways when selecting the best path to a target. We also investigate the impact of the choice of model checking technique on the runtime for our procedure.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—Biology and genetics; B.7.2 [Design Aids]: Verification

General Terms
Algorithms, Design, Verification

1. INTRODUCTION
Enzymatic pathway synthesizers (e.g., [7]) are capable of constructing pathways to target chemicals based on naturally-known reactions as well as reactions that are inferred as plausible. However, few have the capability to provide information on which pathways are better than others, in terms of success likelihood and efficiency.

In our work, we make strides towards this goal by defining the problem of finding stoichiometrically minimal source pathways (SMSPs). These SMSPs are defined by their usage of native metabolites, which are compounds biosynthetically accessible from raw sources (e.g., glucose, ammonia, sulfate, and phosphate) using only the enzymes genetically encoded within the host organism. Informally, SMSPs are paths whose source nodes correspond to native metabolites and which use a non-dominated amount of those compounds. The SMSP problem is related to that of balancing a metabolic pathway: the latter is a limiting case of the SMSP problem as well as reactions that are inferred as plausible. However, finding SMSPs can easily be shown to be NP-complete [4] with a reduction from the set partition problem [5], so we take a model checking approach to solve this SMSP problem. In this work, we describe the model checking approach that we employ, as well as results from an E. coli system, provided by the Act Ontology pathway synthesizer [7].

2. MODEL CHECKING FORMULATION
For model checking, the state of the system is defined by a vector \(q = [N_1, \ldots, N_n, rxn] \), where \(N_i \) represents the number of units of compound \(i \), and \(rxn \) represents the reaction in the metabolic graph that was most recently traversed (“fired”). The edges of the metabolic graph define the transition function. The initial state, \(q_0 \), is \([0, \ldots, 0]\), where the last 0 denotes that no previous reaction was traversed. The target chemical defines the target state that must be reached within a finite number of steps. There are limits on each of the \(N \) variables, where \(M \) is set to be the maximum number of units of a compound (and should be large enough so that it is never reached). \(rxn \) can take on the value of any reaction, and can transition to any other valid reaction whose reactants are available. Our approach is illustrated with an example below.

Chemical coefficients \((N_1, \ldots, N_n)\) increase when a reaction is fired that produces the chemical, and decrease when a reaction uses the chemical. Below, we define \(S, U, t \) for a simple example:

\[
S = \begin{bmatrix}
-2 & -1 & 1 & 0 \\
0 & -1 & -2 & 1
\end{bmatrix}
\]

The number of units of \(A, B, C, D \) are denoted by \(N_1, N_2, N_3, N_4 \), respectively. The corresponding transition function for \(N_3 \) is given below in the notation of the NuSMV model checker [3]:

\[
\text{next}(N_3) :=
\begin{case}
N3 > M : N3; //stop at upper bound
N3 < -M : N3; //stop at lower bound
N4 > 0 : N3; //stop at target
\text{rxn1} = 1 : N3 + 1; //transition for rxn1
\text{rxn2} = 2 : N3 - 2; //transition for rxn2
\text{TRUE} : N3 //else, is the same
\end{case}
\]

esac;
An appropriate linear temporal logic (LTL) [6] specification must then be checked to generate a counterexample that provides one possible path. We iteratively add a constraint to the LTL formula to eliminate this generated counterexample and generate a new counterexample that is not dominated by this original one (or it returns “no counterexample found”). The characteristics of the counterexample must have are: (1) positive coefficient for target, (2) non-negative coefficients for all non-source chemicals, and (3) not dominated by any previously generated counterexample.

Here is an example on another small graph, with target N51. This first LTL specification has characteristics (1) and (2), and is the initial specification that is evaluated.

\[G (N51 = 0 \lor (N51 = 0 \land (N7 < 0) \lor (N20 < 0) \lor (N28 < 0))) \]

The following counterexample is found: N3 = -1, N5 = -1, N51 = 1, implying that one unit each of Chemicals 3 and 5 can be consumed to produce one unit of 51. The next specification is then:

\[G (N51 = 0 \lor (N51 = 0 \land (N7 < 0) \lor (N20 < 0) \lor (N28 < 0)) \land (N3 <= -1 \land N5 <= -1)) \]

This continues until no further counterexamples are found.

3. RESULTS
First, we examine a concrete solution to this problem. We are using a metabolic graph for E. coli generated by Act [7], which has a total of 1253 reactions and 762 chemicals. In Figure 1(a), we see an example of one non-dominated pathway to d-allose-6-phosphate. All other reactants in this pathway come from the cost of this pathway would be the total of the compounds in red. System accounts for non-unitary coefficients as well. In this case, although this example only has compounds with coefficient 1, our example of one non-dominated pathway to d-allose-6-phosphate.

With the slow performance of NuSMV at bounds greater than 10, we attempted to use other model checking techniques to solve this problem. In particular, we used UCLID [1, 2], a model checker based on satisfiability modulo theories (SMT) solving. As shown in Figure 1(b), UCLID dramatically improved the runtime. Moreover, UCLID can be used with any back-end Boolean satisfiability (SAT) solver, and varying the SAT solver paired with UCLID yields further improvements in runtime as shown in Figure 1(c).

In this E. coli pathway, for the targets beyond depth 3, there was an average speedup factor of 25x, with a maximum of 60x and a minimum of 8x when comparing NuSMV with the standard UCLID solver. We have run this procedure on 19 different targets with UCLID, and for a bound of 11, the average runtime for these is 161 seconds, with a minimum of 11 seconds. Some examples of other chemical targets we analyzed are d-glucosamine-6-phosphate and 3-hydroxypropionaldehyde, which is a component of the antimicrobial compound Reuterin. We are further investigating the qualitative impact of pathways past a certain reaction threshold, as well as other methods to speed up our runtime. More details are available in [4].

4. CONCLUSIONS
We have defined the SMSP problem and shown a viable method of finding SMSPs, with the ability to generate all possible SMSPs (bounded by an input search depth). From our experiments, we already see that the choice of model checker can have a large impact on the runtime, which indicates that further optimization could make greater depths more tractable. Future work can address the variance among the average runtimes for different targets, as well as apply similar methods to other optimal path problems in synthetic biology [4].

Acknowledgment: We are grateful to Chris Anderson and Saurabh Srivastava for their advice and assistance throughout this project.

5. REFERENCES