
Synthesis for Human-in-the-Loop Control Systems

Wenchao Li1?, Dorsa Sadigh2, S. Shankar Sastry2, and Sanjit A. Seshia2

1 SRI International, Menlo Park, USA
li@csl.sri.com

2 University of California, Berkeley, USA
{dsadigh, sastry, sseshia}@eecs.berkeley.edu

Abstract. Several control systems in safety-critical applications involve the in-
teraction of an autonomous controller with one or more human operators. Exam-
ples include pilots interacting with an autopilot system in an aircraft, and a driver
interacting with automated driver-assistance features in an automobile. The cor-
rectness of such systems depends not only on the autonomous controller, but also
on the actions of the human controller. In this paper, we present a formalism for
human-in-the-loop (HuIL) control systems. Particularly, we focus on the problem
of synthesizing a semi-autonomous controller from high-level temporal specifica-
tions that expect occasional human intervention for correct operation. We present
an algorithm for this problem, and demonstrate its operation on problems related
to driver assistance in automobiles.

1 Introduction

Many safety-critical systems are interactive, i.e., they interact with a human being, and
the human operator’s role is central to the correct working of the system. Examples
of such systems include fly-by-wire aircraft control systems (interacting with a pilot),
automobiles with driver assistance systems (interacting with a driver), and medical de-
vices (interacting with a doctor, nurse, or patient). We refer to such interactive control
systems as human-in-the-loop control systems. The costs of incorrect operation in the
application domains served by these systems can be very severe. Human factors are
often the reason for failures or “near failures”, as noted by several studies (e.g., [1,7]).

One alternative to human-in-the-loop systems is to synthesize a fully autonomous
controller from a high-level mathematical specification. The specification typically cap-
tures both assumptions about the environment and correctness guarantees that the con-
troller must provide, and can be specified in a formal language such as linear temporal
logic (LTL) [15]. While this correct-by-construction approach looks very attractive, the
existence of a fully autonomous controller that can satisfy the specification is not al-
ways guaranteed. For example, in the absence of adequate assumptions constraining
its behavior, the environment can be modeled as being overly adversarial, causing the
synthesis algorithm to conclude that no controller exists. Additionally, the high-level
specification might abstract away from inherent physical limitations of the system, such
as insufficient range of sensors, which must be taken into account in any real implemen-
tation. Thus, while full manual control puts too high a burden on the human operator,

? This work was performed when the first author was at UC Berkeley.

some element of human control is desirable. However, at present, there is no system-
atic methodology to synthesize a combination of human and autonomous control from
high-level specifications. In this paper, we address this limitation of the state of the
art. Specifically, we consider the following question: Can we devise a controller that
is mostly automatic and requires only occasional human interaction for correct opera-
tion? We formalize this problem of human-in-the-loop (HuIL) synthesis and establish
formal criteria for solving it.

A particularly interesting domain is that of automobiles with “self-driving” features,
otherwise also termed as “driver assistance systems”. Such systems, already capable of
automating tasks such as lane keeping, navigating in stop-and-go traffic, and paral-
lel parking, are being integrated into high-end automobiles. However, these emerging
technologies also give rise to concerns over the safety of an ultimately driverless car.
Recognizing the safety issues and the potential benefits of vehicle automation, the Na-
tional Highway Traffic Safety Administration (NHTSA) recently published a statement
that provides descriptions and guidelines for the continual development of these tech-
nologies [13]. Particularly, the statement defines five levels of automation ranging from
vehicles without any control systems automated (Level 0) to vehicles with full automa-
tion (Level 4). In this paper, we focus on Level 3 which describes a mode of automation
that requires only limited driver control:

“Level 3 - Limited Self-Driving Automation: Vehicles at this level of automa-
tion enable the driver to cede full control of all safety-critical functions un-
der certain traffic or environmental conditions and in those conditions to rely
heavily on the vehicle to monitor for changes in those conditions requiring
transition back to driver control. The driver is expected to be available for oc-
casional control, but with sufficiently comfortable transition time. The vehicle
is designed to ensure safe operation during the automated driving mode.” [13]

Essentially, this mode of automation stipulates that the human driver can act as a
fail-safe mechanism and requires the driver to take over control should something go
wrong. The challenge, however, lies in identifying the complete set of conditions under
which the human driver has to be notified ahead of time. Based on the NHTSA state-
ment, we identify four important criteria required for a human-in-the-loop controller to
achieve this level of automation.

1. Monitoring. The controller should be able to determine if human intervention is
needed based on monitoring past and current information about the system and its
environment.

2. Minimally Intervening. The controller should only invoke the human operator when
it is necessary, and does so in a minimally intervening manner.

3. Prescient. The controller can determine if a specification may be violated ahead of
time, and issues an advisory to the human operator in such a way that she has suffi-
cient time to respond.

4. Conditionally Correct. The controller should operate correctly until the point when
human intervention is deemed necessary.

We further elaborate and formally define these concepts later in Section 3. In gen-
eral, a human-in-the-loop controller, as shown in Figure 1 is a controller consists of

2

three components: an automatic controller, a human operator, and an advisory control
mechanism that orchestrates the switching between the auto-controller and the human
operator.3 In this setting, the auto-controller and the human operator can be viewed as
two separate controllers, each capable of producing outputs based on inputs from the en-
vironment, while the advisory controller is responsible for determining precisely when
the human operator should assume control while giving her enough time to respond.

Fig. 1: Human-in-the-Loop Controller: Component Overview

In this paper, we study the construction of such controller in the context of reactive
synthesis from LTL specifications. Reactive synthesis is the process of automatically
synthesizing a discrete system (e.g., a finite-state Mealy transducer) that reacts to en-
vironment changes in such a way that the given specification (e.g., a LTL formula) is
satisfied. There has been growing interest recently in the control and robotics commu-
nities (e.g., [20,9]) to apply this approach to automatically generate embedded control
software. In summary, the main contributions of this paper are:
• A formalization of human-in-the-loop control systems and the problem of synthesiz-

ing such controllers from high-level specifications, including four key criteria these
controllers must satisfy.
• An algorithm for synthesizing human-in-the-loop controllers that satisfy the afore-

mentioned criteria.
• An application of the proposed technique to examples motivated by driver-assistance

systems for automobiles.
The paper is organized as follows. Section 2 describes an motivating example dis-

cussing a car following example. Section 3 provides a formalism and characterization
of the human-in-the-loop controller synthesis problem. Section 4 reviews material on
reactive controller synthesis from temporal logic. Section 5 describes our algorithm for
the problem. We then present case studies of safety critical driving scenarios in Sec-
tion 6. Finally, we discuss related work in Section 7 and conclude in Section 8.

3 In this paper, we do not consider explicit dynamics of the plant. Therefore it can be considered
as part of the environment also.

3

2 Motivating Example

Car A

Car C

Car B

2

1

4 6 8 10

3 5 7 9
Blocked

by

Car B

(a) A’s Sensing Range.

Car A

Car C

Car B

2

1

4 6 8 10

3 5 7 9

(b) Failed to Follow.

Fig. 2: Controller Synthesis – Car A Following Car B

Consider the example in Figure 2. CarA is the autonomous vehicle, carB andC are
two other cars on the road. We assume that the road has been divided into discretized
regions that encode all the legal transitions for the vehicles on the map, similar to the
discretization setup used in receding horizon temporal logic planning [21]. The objec-
tive of car A is to follow car B. Note that car B and C are part of the environment and
cannot be controlled. The notion of following can be stated as follows. We assume that
carA is equipped with sensors that allows it to see two squares ahead of itself if its view
is not obstructed, as indicated by the enclosed region by blue dashed lines in Figure 2a.
In this case, car B is blocking the view of car A, and thus car A can only see regions 3,
4, 5 and 6. Car A is said to be able to follow car B if it can always move to a position
where it can see car B. Furthermore, we assume that car A and C can move at most 2
squares forward, but car B can move at most 1 square ahead, since otherwise car B can
out-run or out-maneuver car A.

Given this objective, and additional safety rules such as cars not crashing into one
another, our goal is to automatically synthesize a controller for car A such that:

• car A follows car B whenever possible;
• and in situations where the objective may not be achievable, switches control to the

human driver while allowing sufficient time for the driver to respond and take control.

In general, it is not always possible to come up with a fully automatic controller
that satisfies all requirements. Figure 2b illustrates such a scenario where car C blocks
the view as well as the movement path of car A after two time steps. The brown arrows
indicate the movements of the three cars in the first time step, and the purple arrows
indicate the movements of car B and C in the second time step. Positions of a car X
at time t is indicated by Xt. In this failure scenario, the autonomous vehicle needs to
notify the human driver since it has lost track of car B.

Hence, human-in-the-loop synthesis is tasked with producing an autonomous con-
troller along with advisories for the human driver in situations where her attention is
required. Our challenge, however, is to identify the conditions that we need to monitor
and notify the driver when they may fail. In the next section, we discuss how human
constraints such as response time can be simultaneously considered in the solution, and
mechanisms for switching control between the auto-controller and the human driver.

4

3 Formal Model of HuIL Controller
3.1 Preliminaries
Consider a Booleanized space over the input and output alphabet X = 2X and Y =
2Y , where X and Y are two disjoint sets of variables representing inputs and outputs
respectively, we model a discrete controller as a finite-state transducer. A finite-state
(Mealy) transducer (FST) is a tuple M = (Q, q0,X ,Y, ρ, δ), where Q is the set of
states, q0 ∈ Q is the initial state, ρ : Q × X → Q is the transition function, and
δ : Q × X → Y is the output function. Given an input sequence x = x0x1 . . ., a run
of M is the infinite sequence q = q0q1 . . . of states such that qk+1 = ρ(qk, ik) for all
k ≥ 0. The run q on x produces the wordM(x) = δ(q0, x0)δ(q1, x1) The language
of M is then denoted by the set L(M) = {(x, y)ω |M(x) = y}.

To characterize correctness of M , we assume that we can label if a state is unsafe
or not, by using a function F : Q → {true,false}, i.e. a state q is failure-prone if
F(q) = true. We elaborate on F later in Section 5.1.

3.2 Agents as Automata
We model two of the three agents in a human-in-the-loop controller, the automatic con-
trollerAC and the advisory controller VC, as finite-state transducers (FSTs). The human
operator can be viewed as another FSTHC that uses the same input and output interface
as the auto-controller. The overall controllerHuIL is then a composition of the models
ofHC, AC and VC.

We use a binary variable auto to denote the internal advisory signal that VC sends
to both AC and HC. Hence, XHC = XAC = X ∪ {auto}, and YVC = {auto}. When
auto = false, it means the advisory controller is requiring the human operator to
take over control, and the auto-controller can have control otherwise.

We assume that the human operator (e.g., driver behind the wheel) can take control
at any time by transitioning from a “non-active” state to an “active” state, e.g., by hitting
a button on the dashboard or simply pressing down the gas pedal or the brake. When
HC is in the “active” state, the human operator essentially acts as the automaton that
produces outputs to the plant (e.g., a car) based on environment inputs. We use a binary
variable active to denote if HC is in the “active” state. When active = true, the
output ofHC overwrites the output ofAC, i.e. the output ofHC is the output ofHuIL.
The “overwrite” action happens when a sensor senses the human operator is in control,
e.g., putting her hands on the wheel. Similarly, when active = false, the output of
HuIL is the output of AC. Note that even though the human operator is modeled as
a FST here, since we do not have direct control of the human operator, it can in fact
be any arbitrary relation mapping X to Y . Considering more complex human driver
models is left as a future direction [17].

3.3 Criteria for Human-in-the-Loop Controllers
One key distinguishing factor of a human-in-the-loop controller from traditional con-
troller is the involvement of a human operator. Hence, human factors such as response
time cannot be disregarded. In addition, we would like to minimize the need to engage
the human operator. Based on the NHTSA statement, we derive four criteria for any
effective human-in-the-loop controller, as stated below.

5

1. Monitoring. An advisory auto is issued to the human operator under specific con-
ditions. These conditions in turn need to be determined unambiguously at runtime,
potentially based on history information but not predictions. In a reactive setting,
this means we can use trace information only up to the point when the environment
provides a next input from the current state.

2. Minimally intervening. Our mode of interaction requires only selective human inter-
vention. An intervention occurs when HC transitions from the “non-active” state to
the “active” state (we discuss mechanisms for suggesting a transition from “active”
to “non-active” in Section 5.3, after prompted by the advisory signal auto being
false). However, frequent transfer of control would mean constant attention is
required from the human operator, thus nullifying the benefits of having the auto-
controller. In order to reduce the overhead of human participation, we want to mini-
mize a joint objective function C that combines two elements: (i) the probability that
when auto is set to false, the environment will eventually force AC into a failure
scenario, and (ii) the cost of having the human operator taking control. We formalize
this objective function in Sec. 5.1.

3. Prescient. It may be too late to seek the human operator’s attention when failure is
imminent. We also need to allow extra time for the human to respond and study the
situation. Thus, we require an advisory to be issued ahead of any failure scenario. In
the discrete setting, we assume we are given a positive integer T representing human
response time (which can be driver-specific), and require that auto is set to false
at least T number of transitions ahead of a state (in AC) that is unsafe.

4. Conditionally-Correct. The auto-controller is responsible for correct operation as
long as auto is set to true. Formally, if auto = true when AC is at a state q,
then F(q) = false. Additionally, when auto is set to false, the auto-controller
should still maintain correct operation in the next T − 1 time steps, during or after
which we assume the human operator take over control. Formally, if auto changes
from true to falsewhenAC is at a state q, letRT (q) be the set of states reachable
from q within T − 1 transitions, then F(q′) = false, ∀q′ ∈ RT (q).

Now we are ready to state the HuIL Controller Synthesis Problem: Given a model
of the system and its specification expressed in a formal language, synthesize a HuIL
controllerHuIL that is, by construction, monitoring, minimally intervening, prescient,
and conditionally correct.

In this paper, we study the synthesis of a HuIL controller in the setting of synthe-
sis of reactive systems from linear temporal logic (LTL) specifications. We give back-
ground on this setting in Section 4, and propose an algorithm for solving the HuIL
controller synthesis problem in Section 5.

4 Synthesis from Temporal Logic

4.1 Linear Temporal Logic

An LTL formula is built from atomic propositions AP , Boolean connectives (i.e. nega-
tions, conjunctions and disjunctions), and temporal operators X (next) and U (until).
In this paper, we consider AP = X ∪ Y .

6

LTL formulas are usually interpreted over infinite words (traces) w ∈ Σω , where
Σ = 2AP . The language of an LTL formula ψ is the set of infinite words that satisfy
ψ, given by L(ψ) = {w ∈ Σω |w |= ψ}. One classic example is the LTL formula
G (p→ F q), which means every occurrence of p in a trace must be followed by some
q in the future.

An LTL formula ψ is satisfiable if there exists an infinite word that satisfies ψ,
i.e., ∃w ∈ (2AP)ω such that w |= ψ. A transducer M satisfies an LTL formula ψ if
L(M) ⊆ L(ψ). We write this as M |= ψ. Realizability is the problem of determining
whether there exists a transducer M with input alphabet X = 2X and output alphabet
Y = 2Y such that M |= ψ.

4.2 Synthesis from GR(1) Specification
Synthesis is the process of automatically finding an implementation that satisfies a given
specification. However, the complexity of deciding the realizability of an LTL formula
can be prohibitively high (2EXPTIME-complete [16]). Piterman et al. [14] describe
a more efficient algorithm for synthesizing a subclass of LTL properties, known as
Generalized Reactivity (1) [GR(1)] formulas. In this paper, we consider (unrealizable)
specifications given in the GR(1) subclass. A GR(1) formula has the form ψ = ψenv →
ψsys, where ψenv represents the environment assumptions and ψsys represents the sys-
tem guarantees. The syntax of GR(1) formulas is given as follows. We require ψl for
l ∈ {env, sys} to be a conjunction of sub-formulas in the following forms:
• ψli: a Boolean formula that characterizes the initial states.
• ψlt: an LTL formula that characterizes the transition, in the form G B, where B is

a Boolean combination of variables in X ∪ Y and expression X u where u ∈ X if
l = env and u ∈ X ∪ Y if l = sys.
• ψlf : an LTL formula that characterizes fairness, in the form G F B, where B is a

Boolean formula over variables in X ∪ Y .

4.3 Games and Strategies
In general, the synthesis problem can be viewed as a two-player game between the
system sys and the environment env. Following [14], a finite-state two-player game is
defined by its game graph, represented by the tuple G = (Qg, θg, ρenv, ρsys,Win) for
input variables X controlled by the environment env and output variables Y controlled
by the system sys, whereQg ⊆ 2X∪Y is the state space of the game, θg is a Boolean for-
mula over X ∪Y that specifies the initial states of the game structure, ρenv ⊆ Qg× 2X

is the environment transition relation relating a present state in Qg to the possible next
inputs the environment can pick in 2X , ρsys ⊆ Qg × 2X × 2Y is the system transition
relation relating a present state in Qg and a next input in 2X picked by the environ-
ment to the possible next outputs the system can pick in 2Y , and Win is the winning
condition. Given a set of GR(1) specifications, i.e. ψenvi , ψsysi , ψenvt , ψsyst , ψenvf , ψsysf ,
we can define a game structure G by setting θg = ψenvi ∧ ψsysi , ρenv = ψenvt with
all occurrences of X u replaced by u′4, ρsys = ψsyst with all occurrences of X u re-
placed by u′, and Win as ψenvf → ψsysf . A play π of G is a maximal sequence of states

4 We use the primed copies u′ of u to denote the next input/output variables.

7

π = q0q1 . . . of states such that q0 |= θg and (qi, qi+1) ∈ ρenv ∧ ρsys for all i ≥ 0. A
play π is winning for the system iff it is infinite and π |= Win. Otherwise, π is winning
for the environment. The set of states from which there exists a winning strategy for the
environment is called the winning region for env.

A finite-memory strategy for env in G is a tuple Senv = (Γ env, γenv0 , ηenv), where
Γ env is a finite set representing the memory, γenv0 ∈ Γ env is the initial memory con-
tent, and ηenv ⊆ Qg × Γ env × X × Γ env is a relation mapping a state in G and some
memory content γenv ∈ Γ env to the possible next inputs the environment can pick and
an updated memory content. A strategy Senv is winning for env from a state q if all
plays starting in q and conforming to Senv are won by env. Following the terminology
used in [8], if a strategy Senv is winning from an initial state q satisfying θg , then it is
called a counterstrategy for env. The existence of a counterstrategy is equivalent to the
specification being unrealizable. We refer the readers to [8] for details on how a coun-
terstrategy can be extracted from intermediate results of the fix-point computation for
the winning region for env. On the other hand, a winning strategy for the system can
be turned into an implementation, e.g., a sequential circuit with |X| inputs, |X| + |Y |
state-holding elements (flip-flops), and |Y | outputs that satisfies the given GR(1) speci-
fication. In this paper, the synthesized implementation is effectively the auto-controller
in the proposed HuIL framework, and can be viewed as a Mealy machine with state
space Q ⊆ 2X∪Y . We refer the readers to [14] for details of this synthesis process.

4.4 Counterstrategy Graph

The counterstrategy can be conveniently viewed as a transition system. A counterstrat-
egy graph Gc is a discrete transition system Gc = (Qc, Qc0 ⊆ Qc, ρc ⊆ Qc × Qc),
where Qc ⊆ Qg × Γ env is the state space, Qc0 = Qg0 × γenv0 is the set of initial states,
and ρc = ηenv ∧ ρsys is the transition relation. In a nutshell, Gc describes evolutions
of the game state where env adheres to ηenv and sys adheres to ρsys. For convenience,
we use a function θc : Qc → 2X∪Y to denote the game state (an assignment to X and
Y) associated with a state qc ∈ Qc. A run πc of Gc is a maximal sequence of states
πc = qc0q

c
1 . . . of states such that qc0 ∈ Qc0 and (qci , q

c
i+1) ∈ ρc for all i ≥ 0.

We can also view Gc as a directed graph, where each state in Qc is given its own
node, and there is an edge from node qci to node qcj if given the current state at qci , there
exists a next input picked from the counterstrategy for which the system can produce a
legal next output so that the game proceeds to a new state at qcj .

5 HuIL Controller Synthesis

Given an unrealizable specification, a counterstrategy Senv exists for env which de-
scribes moves by env such that it can force a violation of the system guarantees. The
key insight of our approach for synthesizing a HuIL controller is that we can synthesize
an advisory controller that monitors these moves and prompts the human operator with
sufficient time ahead of any danger. These moves are essentially assumptions on the
environment under which the system guarantees can be ensured. When these assump-
tions are not violated (the environment may behave in a benign way in reality), the
auto-controller fulfills the objective of the controller. On the other hand, if any of the

8

assumptions is violated, as flagged by the advisory controller, then the control is safely
switched to the human operator in a way that she can have sufficient time to respond.
The challenge, however, is to decide when an advisory should be sent to the human
operator, in a way that it is also minimally intervening to the human operator. We use
the following example to illustrate our algorithm.
Example 1. ConsiderX = {x}, Y = {y} and the following GR(1) sub-formulas which
together form ψ = ψenv → ψsys.
1. ψenvf = G (F ¬x)

2. ψsyst = G (¬x→ ¬y)

3. ψsysf = G (F y)

(a) Counterstrategy graph Gc for unre-
alizable specification ψ.

(b) Condensed graph Ĝc for Gc after
contracting the SCC.

Specification ψ is not realizable. Figure 3a shows the computed counterstrategy
graph Gc. The literal x̄ (ȳ) denotes the negation of the propositional variable x (y). The
memory content is denoted by γi with γ0 being the initial memory content. The three
shaded states on the left are the initial states. The literals on the edges indicate that the
environment first chooses x̄ and then the system chooses ȳ. (the system is forced to pick
ȳ due to ψsyst). Observe that, according the counterstrategy, the system will be forced
to pick ȳ perpetually. Hence, the other system guarantee ψsysf cannot be satisfied.

5.1 Weighted Counterstrategy Graph
Recall that a counterstrategy can be viewed as a discrete transition system or a directed
graph Gc. We consider two types of imminent failures (violation of some system guar-
antee specification) described by Gc.
• Safety violation. For a node (state) qc1 ∈ Qc, if there does not exist a node qc2 such

that (qc1, q
c
2) ∈ ρc, then we say qc1 is failure-imminent. In this scenario, after env

picks a next input according to the counterstrategy, sys cannot find a next output
such that all of the (safety) guarantees are satisfied (some ψsysi or ψsyst is violated).
• Fairness violation. If a node qc is part of a strongly connected component (SCC)
scc in Qc, then we say qc is failure-doomed. For example, the node (x̄, ȳ, γ1) in
Figure 3a is a failure-doomed node. Starting from qc, env can always pick inputs in
such a way that the play is forced to get stuck in scc. Clearly, all other states in scc
are also failure-doomed.

9

Now we make the connection of the labeling function F for a controller M to
the counterstrategy graph Gc which describes behaviors that M should not exhibit.
Consider an auto-controller M and a state q (represented by the assignment xy) in M .
F(q) = true if and only if there exist some qc ∈ Qc such that θc(qc) = xy and qc is
either failure-imminent or failure-doomed. In practice, it is not always the case that the
environment will behave in the most adversarial way. For example, a car in front may
yield if it is blocking our path. Hence, even though the specification is not realizable, it
is still important to assess, at any given state, whether it will actually lead to a violation.
For simplicity, we assume that the environment will adhere to the counterstrategy once
it enters a failure-doomed state.

We can convertGc to its directed acyclic graph (DAG) embedding Ĝc = (Q̂c, Q̂c0, ρ̂
c)

by contracting each SCC in Gc to a single node. Figure 3b shows the condensed graph
Ĝc of Gc shown in Figure 3a. We use a surjective function f̂ : Qc → Q̂c to describe
the mapping of nodes from Gc to Ĝc. We say a node q̂ ∈ Q̂c is failure-prone if a node
qc ∈ Qc is either failure-imminent or failure-doomed and f̂(qc) = q̂.

Recall from Section 3.3 that the notion of minimally-intervening requires the mini-
mization of a cost function C, which involves the probability that auto is set to false,
Thus far, we have not associated any probabilities with transitions taken by the environ-
ment or the system. While our approach can be adapted to work with any assignment
of probabilities, for ease of presentation, we make a particular choice in this paper.
Specifically, we assume that at each step, the environment picks a next-input uniformly
at random from the set of possible legal actions (next-inputs) obtained from ηenv given
the current state. In Example 1 and correspondingly Figure 3a, this means that it is
equally likely for env to choose x̄ or x from any of the states. We use c(q) to denote the
total number of legal actions that the environment can take from a state q.

In addition, we take into account of the cost of having the human operator perform
the maneuver instead of the auto-controller. In general, this cost increases with longer
human engagement. Based on these two notions, we define $, which assigns a weight
to an edge e ∈ Q̂c × Q̂c in Ĝc, recursively as follows. For an edge between q̂i and q̂j ,

$(q̂i, q̂j) =

{
1 if q̂j is failure-prone
pen(q̂i)×len(q̂i)

c(q̂i)
Otherwise

where pen : Q̂c → Q+ is a user-defined penalty parameter5, and len : Q̂c → Z+ is the
length (number of edges) of the shortest path from a node q̂i to any failure-prone node
in Ĝc. Intuitively, a state far away from any failure-prone state is less likely to cause a
failure since the environment would need to make multiple consecutive moves all in an
adversarial way. However, if we transfer control at this state, the human operator will
have to spend more time in control, which is not desirable for a HuIL controller. Next,
we describe how to use this edge-weighted DAG representation of a counterstrategy
graph to derive a HuIL controller that satisfies the criteria established earlier.

5.2 Counterstrategy-Guided Synthesis
Suppose we have a counterstrategy graph Gc that summarizes all possible ways for the
environment to force a violation of the system guarantees. Consider an outgoing edge

5 pen(q̂i) should be chosen such that $(q̂i, q̂j) < 1.

10

from a non-failure-prone node q̂ in Ĝc (condensed graph of Gc), this edge encodes a
particular condition where the environment makes a next-move given some last move
made by the environment and the system. If some of these next-moves by the environ-
ment are disallowed, such that none of the failure-prone nodes are reachable from any
initial state, then we have effectively eliminated the counterstrategy. This means that if
we assert the negation of the corresponding conditions as additional ψenvt (environment
transition assumptions), then we can obtain a realizable specification.

Formally, we mine assumptions of the form φ =
∧
i(G (ai → ¬X bi)), where ai is

a Boolean formula describing a set of assignments over variables in X ∪ Y , and bi is a
Boolean formula describing a set of assignments over variables in X .

Under the assumption φ, if (φ ∧ ψenv) → ψsys is realizable, then we can auto-
matically synthesize an auto-controller that satisfies ψ. In addition, the key observation
here is that mining φ is equivalent to finding a set of edges in Ĝc such that, if these
edges are removed from Ĝc, then none of the failure-prone nodes is reachable from
any initial state. We denote such set of edges as Eφ, where each edge e ∈ Eφ corre-
sponds to a conjunct in φ. For example, if we remove the three outgoing edges from
the source nodes in Figure 3b, then the failure-prone node is not reachable. Removing
these three edges correspond to adding the following environment assumption, which
can be monitored at runtime.

(G ((x ∧ y)→ ¬X x̄)) ∧ (G ((x̄ ∧ ȳ)→ ¬X x̄)) ∧ (G ((x ∧ ȳ)→ ¬X x̄))

Human factors play an important role in the design of a HuIL controller. The cri-
teria established for a HuIL controller in Section 3.3 also require it to be prescient and
minimally intervening. Hence, we want to mine assumptions that reflect these crite-
ria as well. The notion of prescient essentially requires that none of the failure-prone
nodes is reachable from a non-failure-prone node with less than T steps (edges). The
weight function $ introduced earlier can be used to characterize the cost of a failing
assumption resulting in the advisory controller prompting the human operator to take
over control (by setting auto to false). Formally, we seek Eφ such that the total cost
of switching control

∑
e∈Eφ $(e) is minimized.

We can formulate this problem as a s-t min-cut problem for directed acyclic graphs.
Given Ĝc, we first compute the subset of nodes Q̂cT ⊆ Q̂c that are backward reachable
within T − 1 steps from the set of failure-prone nodes (when T = 1, Q̂cT is the set of
failure-prone node). We assume that Q̂c0 ∩ Q̂cT = ∅. Next, we remove the set of nodes
Q̂cT from Ĝc and obtain a new graph ĜcT . Since ĜcT is again a DAG, we have a set of
source nodes and a set of terminal nodes. Thus, we can formulate a s-t min-cut problem
by adding a new source node that has an outgoing edge (with a sufficiently large weight)
to each of the source nodes and a new terminal node that has an incoming edge (with
a sufficiently large weight) from each of the terminal nodes. This s-t min-cut problem
can be easily solved by standard techniques [6]. The overall approach is summarized in
Algorithm 1.

Theorem 1. Given a GR(1) specification ψ and a response time parameter T , Algo-
rithm 1 is guaranteed to either produce a fully autonomous controller satisfying ψ,
or a HuIL controller, modeled as a composition of an auto-controller AC, a human
operator and an advisory controller VC, that is monitoring, prescient with parameter

11

Algorithm 1 Counterstrategy-Guided HuIL Controller Synthesis
Input: GR(1) specification ψ = ψenv → ψsys.
Input: T : parameter for minimum human response time.
Output: AC and VC.HuIL is then a composition of AC, VC andHC.

if ψ is realizable then
Synthesize transducer M |= ψ (using standard GR(1) synthesis);
HuIL :=M (fully autonomous).

else
Generate Gc from ψ (assume a single Gc; otherwise the algorithm is performed iteratively);
Generate the DAG embedded Ĝc from Gc.
Reduce Ĝc to ĜcT ;
Assign weights to Ĝc using ϕ; by removing Q̂cT – nodes that are within T − 1 steps of any
failure-prone node;
Formulate a s-t min-cut problem with ĜcT ;
Solve the s-t min-cut problem to obtain Eφ;
Add assumptions φ to ψ to obtain the new specification ψnew := (φ ∧ ψenv)→ ψsys;
Synthesize AC so that M |= ψnew;
Synthesize VC as a (stateless) monitor that outputs auto = false if φ is violated.

end if

T , minimally intervening6 with respect to the cost function fC =
∑
e∈Eφ $(e), and

conditionally correct7.

Proof. (Sketch) When ψ is realizable, a fully autonomous controller is synthesized and
unconditionally satisfies ψ. Now consider that case when ψ is not realizable.

The HuIL controller is monitoring as φ only comprises a set of environment transi-
tions up to the next environment input.

It is prescient by construction. The auto flag advising the human operator to take
over control is set to false precisely when φ is violated. When φ is violated, it cor-
responds to the environment making a next-move from the current state q according to
some edge e = (q̂i, q̂j) ∈ Eφ. Consider any qc ∈ Qc such that f̂(qc) = q̂i, θc(qc) = q.
Since q̂i 6∈ Q̂cT by the construction of ĜcT , q̂i is at least T transitions away from any
failure-prone state in Ĝc. This means qc must also be at least T transitions away from
any failure-imminent state or failure-doomed state in Qc. Hence, by the definition of F
with respect to a failure-doomed or failure-doomed state in Section 5.1, q is (and auto
is set) at least T transitions ahead of any state that is unsafe.

The HuIL controller is also conditionally correct. By the same reasoning as above,
for any state q′ ∈ RT (q), F(q′) = false, i.e. q′ is safe.

Finally, since auto is set to false precisely when φ is violated, and φ in turn is
constructed based on the set of edges Eφ, which minimizes the cost function fC =∑
e∈Eφ $(e), the HuIL controller is minimally-intervening with respect to the cost

function fC .

6 We assume the counterstrategy we use to mine the assumptions is an optimal one – it forces a
violation of the system guarantees as quickly as possible.

7 We assume that all failure-prone nodes are at least T steps away from any initial node.

12

5.3 Switching from Human Operator to Auto-Controller

Once control has been transferred to the human operator, when should the human yield
control to the autonomous controller again? One idea is for the HuIL controller to con-
tinually monitor the environment after the human operator has taken control, checking
if a state is reached from which the auto-controller can ensure that it satisfies the specifi-
cation (under assumption φ), and then the advisory controller can signal a driver telling
her that the auto-controller is ready to take back control. We note that alternative ap-
proaches may exist and we plan to investigate this further in future work.

6 Experimental Results

Our algorithm is implemented as an extension to the GR(1) synthesis tool RATSY [4].
Due to space constraint, we discuss only the car-following example (as shown in Sec-
tion 2) here and refer the readers to http://verifun.eecs.berkeley.edu/
tacas14/ for other examples.

Recall the car-following example shown in Section 2. We describe some of the more
interesting specifications below and their corresponding LTL formulas. pA, pB , pC are
used to denote the positions of car A, B and C respectively.
• Any position can be occupied by at most one car at a time (no crashing):

G
(
pA = x→ (pB 6= x ∧ pC 6= x)

)
where x denotes a position on the discretized space. The cases for B and C are
similar, but they are part of ψenv .
• Car A is required to follow car B:

G
(
(vAB = true ∧ pA = x)→ X (vAB = true)

)
where vAB = true iff car A can see car B.
• Two cars cannot cross each other if they are right next to each other. For example,

when pC = 5, pA = 6 and p′C = 8 (in the next cycle), p′A 6= 7. In LTL,

G
(
((pC = 5) ∧ (pA = 6) ∧ (X pC = 8))→ (X (pA 6= 7))

)
The other specifications can be found in the link described at the beginning of this

section. Observe that car C can in fact force a violation of the system guarantees in one
step under two situations – when pC = 5, pB = 8 and pA = 4, or pC = 5, pB = 8 and
pA = 6. Both are situations where car C is blocking the view of car A, causing it to
lose track of car B. The second failure scenario is illustrated in Figure 2b.

Applying our algorithm to this (unrealizable) specification with T = 1, we obtain
the following assumption φ.

φ = G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 8) ∧ (pC = 5))

) ∧
G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 6) ∧ (pC = 3))

) ∧
G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1))→ ¬X ((pB = 6) ∧ (pC = 5))

)

13

http://verifun.eecs.berkeley.edu/tacas14/
http://verifun.eecs.berkeley.edu/tacas14/

In fact, φ corresponds to three possible evolutions of the environment from the
initial state. In general, φ can be a conjunction of conditions at different time steps as
env and sys progress. The advantage of our approach is that it can produce φ such that
we can synthesize an auto-controller that is guaranteed to satisfy the specification if φ
is not violated, together with an advisory controller that prompts the driver (at least) T
(T = 1 in this case) time steps ahead of a potential failure when φ is violated.

7 Related Work
Similar to [9], we synthesize a discrete controller from temporal logic specifications.
Wongpiromsarn et al. [21] consider a receding horizon framework to reduce the synthe-
sis problem to a set of simpler problems for a short horizon. Livingston et al. [11,12]
exploit the notion of locality that allows “patching” a nominal solution. They update the
local parts of the strategy as new data accumulates allowing incremental synthesis. The
key innovation in this paper is that we consider synthesizing interventions to combine
an autonomous controller with a human operator.

Our work is inspired by the recent works on assumption mining. Chatterjee et al. [5]
construct a minimal environment assumption by removing edges from the game graph
to ensure safety assumptions, then compute liveness assumptions to put additional fair-
ness constraints on the remaining edges. Li et al. [10] and later Alur et al. [2] use a
counterstrategy-guided approach to mine environment assumptions for GR(1) specifi-
cations. We adapt this approach to the synthesis of human-in-the-loop control systems.

In recent years, there has been an increasing interest in human-in-the-loop systems
in the control systems community. Anderson et al. [3] study obstacle avoidance and
lane keeping for semiautonomous cars. They use a model predictive control for their
autonomous control. Our approach, unlike this one, seeks to provide correctness guar-
antees in the form of temporal logic properties. Vasudevan et al. [19] focus on learning
and predicting a human model based on prior observations. Based on the measured
level of threat, the controller intervenes and overwrites the driver’s input. However, we
believe that allowing an auto-controller to override the human inputs is unsafe espe-
cially since it is hard to fully model the environment. We propose a different paradigm
where we allow the human to take control if the autonomous system predicts failure.
Finally, human’s reaction time while driving is an important consideration in this pa-
per. The value of reaction time can range from 1 to 2.5 seconds for different tasks and
drivers [18].

8 Conclusions
In this paper, we propose a synthesis approach for designing human-in-the-loop con-
trollers. We consider a mode of interaction where the controller is mostly autonomous
but requires occasional intervention by a human operator, and study important criteria
for devising such controllers. Further, we study the problem in the context of controller
synthesis from (unrealizable) temporal-logic specifications. We propose an algorithm
based on mining monitorable conditions from the counterstrategy of the unrealizable
specifications. Preliminary results on applying this approach to driver assistance in au-
tomobiles are encouraging. One limitation of the current approach is the use of an ex-
plicit counterstrategy graph (due to weight assignment). We plan to explore symbolic

14

algorithms in the future.

Acknowledgment. This work was supported in part by TerraSwarm, one of six centers
of STARnet, a Semiconductor Research Corporation program sponsored by MARCO
and DARPA. This work was also supported by the NSF grants CCF-1116993 and CCF-
1139138.

References

1. F. A. Administration. The interfaces between flight crews and modern flight systems, 1995.
2. R. Alur et al. Counter-strategy guided refinement of gr(1) temporal logic specifications. In

the Conference on Formal Methods in Computer-Aided Design, pages 26–33, 2013.
3. S. J. Anderson et al. An optimal-control-based framework for trajectory planning, threat as-

sessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios.
International Journal of Vehicle Autonomous Systems, 8(2):190–216, 2010.

4. R. Bloem et al. Ratsy – a new requirements analysis tool with synthesis. In Computer Aided
Verification Conference, pages 425–429, 2010.

5. K. Chatterjee et al. Environment assumptions for synthesis. In Conference on Concurrency
Theory, pages 147–161, 2008.

6. M.-C. Costa et al. Minimal multicut and maximal integer multiflow: A survey. European
Journal of Operational Research, 162(1):55–69, 2005.

7. L. T. Kohn et al. To err is human: Building a safer health system. Technical report, A report
of the Committee on Quality of Health Care in America, Institute of Medicine, 2000.

8. R. Könighofer et al. Debugging formal specifications using simple counterstrategies. In
Conference on Formal Methods in Computer-Aided Design, pages 152–159, 2009.

9. H. Kress-Gazit et al. Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

10. W. Li et al. Mining assumptions for synthesis. In Conference on Formal Methods and Models
for Codesign, pages 43–50, 2011.

11. S. C. Livingston et al. Backtracking temporal logic synthesis for uncertain environments. In
Conference on Robotics and Automation, pages 5163–5170, 2012.

12. S. C. Livingston et al. Patching task-level robot controllers based on a local µ-calculus
formula. In Conference on Robotics and Automation, pages 4588–4595, 2013.

13. National Highway Traffic Safety Administration. Preliminary statement of policy concerning
automated vehicles, May 2013.

14. N. Piterman et al. Synthesis of reactive(1) designs. In Verification, Model Checking, and
Abstract Interpretation, pages 364–380, 2006.

15. A. Pnueli. The temporal logic of programs. In Annual Symposium on Foundations of Com-
puter Science, pages 46–57, 1977.

16. R. Rosner. Modular synthesis of reactive systems. Ph.D. dissertation, Weizmann Institute of
Science, 1992.

17. D. Sadigh et al. Data-driven probabilistic modeling and verification of human driver behav-
ior. In Formal Verification and Modeling in Human-Machine Systems, 2014.

18. T. J. Triggset al. Reaction time of drivers to road stimuli. 1982.
19. R. Vasudevan et al. Safe semi-autonomous control with enhanced driver modeling. In Amer-

ican Control Conference, pages 2896–2903, 2012.
20. T. Wongpiromsarn et al. Receding horizon temporal logic planning for dynamical systems.

In Conference on Decision and Control, pages 5997–6004, 2009.
21. T. Wongpiromsarn et al. Receding horizon temporal logic planning. IEEE Transactions on

Automatic Control, 57(11):2817–2830, 2012.

15

	Synthesis for Human-in-the-Loop Control Systems
	Introduction
	Motivating Example
	Formal Model of HuIL Controller
	Preliminaries
	Agents as Automata
	Criteria for Human-in-the-Loop Controllers

	Synthesis from Temporal Logic
	Linear Temporal Logic
	Synthesis from GR(1) Specification
	Games and Strategies
	Counterstrategy Graph

	HuIL Controller Synthesis
	Weighted Counterstrategy Graph
	Counterstrategy-Guided Synthesis
	Switching from Human Operator to Auto-Controller

	Experimental Results
	Related Work
	Conclusions

