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Abstract. Al-based autonomous systems are increasingly relying on
machine learning (ML) components to perform a variety of complex tasks
in perception, prediction, and control. The use of ML components is
projected to grow and with it the concern of using these components
in systems that operate in safety-critical settings. To guarantee a safe
operation of autonomous systems, it is important to run an ML component
in its operational design domain (ODD), i.e., the conditions under which
using the component does not endanger the safety of the system. Building
safe and reliable autonomous systems which may use machine-learning-
based components, calls therefore for automated techniques that allow to
systematically capture the ODD of systems.

In this paper, we present a framework for learning runtime monitors
that capture the ODDs of black-box systems. A runtime monitor of an
ODD predicts based on a sequence of monitorable observations whether
the system is about to exit the ODD. We particularly investigate the
learning of optimal monitors based on counterexample-guided refinement
and conformance testing. We evaluate the applicability of our approach
on a case study from the domain of autonomous driving.

Keywords: Al-based autonomy, Runtime assurance, Operational design do-
mains, Black-box models

1 Introduction

In recent years, there has been an increase in using autonomous systems in
various safety-critical applications such as in transport, medicine, manufacturing,
and space. Considering the complexity of the environments these systems are
being deployed in, autonomous systems rely on machine learning (ML) tech-
niques to solve complex tasks in perception, prediction and control. The use of
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complex, black-box ML components raises concerns regarding the safe operation
of ML-based systems [2,11,41]. ML models such as deep neural networks are
unpredictable; unanticipated changes in the environment may cause a neural net-
work to produce faulty outcomes that could endanger the safety of the system [1,
23, 15]. To raise the level of assurance in autonomous systems, it is therefore
crucial to provide designers with the necessary tools that help them understand
and further capture the operational design domain (ODD) of such systems. In
autonomous driving, the SAE J3016 standard for driving automation systems,
[37], defines an ODD as the

operating conditions under which a given driving automation system or
feature thereof is specifically designed to function, including, but not limited
to, environmental, geographical, and time-of-day restrictions, and/or the
requisite presence or absence of certain traffic or roadway characteristics.

In general, from a user or authority perspective, the ODD can be seen as the
operating environment in which a system should operate safely. To assure the
safety of the system, the boundaries defined by an ODD must be monitored
during system operation and the system should only operate (autonomously)
when these boundaries are met.

However, not every ODD can be monitored at run time. First and foremost,
some aspects of the ODD may not be reliably observable or are too expensive to
observe. A monitor relying on these aspects is not (efficiently) implementable.
Furthermore, we are interested in obtaining monitors that are predictive — we
optimally want to raise an alarm before the system leaves its ODD. Lastly, we
emphasize that a powerful ODD needs to be specified over runs of the system, as
the history of observable features allows us to approximate hidden system states.

In this paper, we introduce a framework for learning monitorable operational
design domains of black-box systems, in particular for systems with critical ML
components. We define a monitorable ODD to be one that is defined over an
observable feature space and that can be implemented as a runtime monitor that
predicts whether the system will exit the ODD. This stands in contrast to general
definitions of ODDs [37, 27| that do not assume their executability. A monitorable
ODD in our framework is learned in terms of a system-level specification that
defines a general ODD over a possible non-observable abstract feature space,
and a desired class of programs defined over the observable feature space. For
a system-level specification, our framework can be used to learn a monitorable
ODD from the class of programs that predicts whether the system will violate
the specification.

We are particularly interested in learning monitorable ODDs for temporal
system-level specifications, i.e., where the safe operation conditions bounded by
an ODD are defined in terms of timed sequences of observations. Compared to
conditions that only rely on non-temporal features such as the type of a road,
the state of the system, the weather conditions, or the current traffic situation,
the ODDs in our setting incorporate the change of features over time. Consider
a perception module in an autonomous vehicle used for lane keeping. While



the perception module accurately computes the distance from the edge of a
lane, continuous interruptions of the side markings, for example, due to a line of
parking cars or obstacles, may cause the module to produce values triggering a
faulty steering behavior by the controller of the vehicle. In general, this should
not endanger the vehicle if it happens at a low frequency. An occurrence over a
large period of time, may, however, lead to steering the vehicle away from the
lane. A runtime monitor learned by our framework may decide to switch to a
more safe controller (or manual control) if the latter scenario is detected, and
may issue a switch back to using the neural network when the line of obstacles is
passed.

Our framework is based on a quantitative approach for learning monitors.
Since monitors for ODDs are constricted to a specific class of programs and to an
observable feature space possibly different from that of the system-level feature
space, finding a monitor that exactly captures the ODD of a system may not
be feasible: First, the program class may not include enough programs that can
cover the entire concept class of functions defined over the observable feature
space. Furthermore, a sequence of observations over the observable feature space
may correspond to several executions over the system-level feature space. Some of
these executions may satisfy the system-level specification and some may violate
it. Depending on whether the corresponding sequence of observation is to be
classified as part or not included in the ODD will result in a mismatch between
the monitorable ODD and the system-level specification. In this case, given a
quantitative measure over the system level executions, our approach will learn the
optimal monitor over the observable feature space from the class of programs with
respect to the given optimality objective. Particularly, our optimality objective
is defined in terms of the quantitative measure and the rates of false positives
and negatives.

The framework follows a data-driven counterexample-guided refinement ap-
proach for learning monitors. Data used for learning are generated via simulation-
based runtime verification techniques. Specifically, we use VERIFAI, an open-
source toolkit for the formal design and analysis of systems that include Al or
ML components [14]. VERIFAT allows us to analyze ML-based components using
system-level specifications. To scale to complex high-dimensional feature spaces,
VERIFAI operates on an abstract semantic feature space. This space is typically
represented using SCENIC, a probabilistic programming language for modeling
environments [20]. Using SCENIC, we can define scenarios, distributions over
spatial and temporal configurations of objects and agents, in which we want to
deploy and analyze a system. Once the training data has been generated, it is
forwarded to an algorithm for learning monitors from the class of interest (e.g.,
neural networks, decision trees, automata, etc.). The learned monitor is then
checked by a conformance tester. The conformance tester relies again on the
simulation-based testing techniques provided by VERIFAI to check whether a
monitor satisfies a given quantitative objective. If this is the case, a monitor is
returned. Otherwise, counterexamples found during testing are used in the next
learning cycle. We demonstrate the applicability of our framework using a case



study from the domain of autonomous driving. We show that our counterexample-
guided approach can be used to learn a monitorable ODD for an image-based
neural network used for lane keeping. Our example is inspired by several real
case studies VERIFAI has been applied in including with industrial partners (e.g.,
see [22,19,47]).

We summarize our contributions as follows:

— We formalize the notion of operational design domains by introducing the
problem of finding monitorable operational design domains of systems with
respect to system-level specifications.

— We present a framework for learning monitorable operational designs domains
based on a quantitative counterexample-guided refinement approach.

— We present a case study that demonstrates the applicability of our framework
and that points out the challenges in learning monitorable ODDs for black-box
(ML) models.

2 DMotivating Example: Autonomous Lane Keeping

Fig. 1. Example input images to the neural network, rendered in CARLA, showing a
variety of orientation, weather, and road conditions.

Consider a scenario of an autonomous vehicle driving through a city. The car
is equipped with a camera-based perception module using a convolutional neural
network that based on images captured by a camera (cf. Figure 1) estimates the
cross-track error (CTE), i.e., the lateral offset of the car from the centerline of
the road. The estimated values are forwarded to a controller that adjusts the
steering angle of the car. The perception module is a black box. In particular, we
do not have access to (any statistics of) the images used to train the network
nor any knowledge about potential gaps in the training set.



Our goal is to learn a monitor that captures the conditions under which using
the neural network does not result in large CTE values that endanger the safety
of the car. The monitor should alert in time, to refrain from using the network
and maybe switch to a more trustworthy safe controller, e.g. to human control or
one that is less optimal but uses more trustworthy sensors.

The behavior of the neural network may be influenced by many factors, some
of that may not have been sufficiently covered during training. For example, while
the network was trained on images, its behavior may depend on other parameters
not accounted for in the input to the network such as weather conditions (like
precipitation or cloudiness), the sun angle, thus, determining the time of day and
shadowing effects, the position and heading on the road, its velocity, and other
objects on the road. We refer to these factors as semantic features. For our goal,
these features must be observable and monitorable at run time.

Once we fix the observable semantic features, which we intend to use to
monitor the system, the next step is to establish a connection between the values
of these semantic features and a general system-level safety specification (e.g.,
leaving the lane). A monitor that implements this connection is one that captures
the ODD of the neural network with respect to the above-mentioned semantic
features and predicts whether the system will leave the ODD. For example, under
rainy weather conditions, at certain turns, or after observing certain landmarks
on the road, the monitor might predict that the system will likely deviate too far
from the centerline or even exits its lane.

We present a systematic approach to capturing the connection between the
system-level specification and the sequences of values of observable features.
Our approach is based on exploring the diverse set of scenarios possible under
different instantiations of the aforementioned semantic features and analyzing the
executions of the system with respect to a system-level specification. Based on
data generated by the exploration and analysis processes, our approach learns a
monitor that predicts a faulty behavior of the system, or in other words, leaving
the ODD of the neural network.

3 Optimal Monitors for Operational Design Domains

In this section, we introduce the problem of learning a monitorable operational
design domain of a system. We first establish some key definitions. We then define
the learning problem, and finally state some of the challenges in constructing
matching monitors for operational design domains.

3.1 Learning monitors for ODDs

Notation. For an (possibly infinite) alphabet X', we define the set of traces over
X by the set of finite words X*. We define the set of traces of a fixed-length
d € N over X by the set X¢. A language over X is any set L C X*. A language
of d-length traces is any set L C X9,



For a (discrete-time) black-box system with inputs Z and outputs O, we
capture its behavior as a discrete sequence of input-output pairs. Formally, we
use Yyys = (Z x O). The system behavior is then a language C' C X7 .. We
make no further assumptions over the system, in particular, we allow for the
system to be nondeterministic, i.e., the system may provide different outputs for
the same sequence of inputs. The system-level specification, encoding a correct
system behavior, can be captured as set of traces over input-output pairs that the
system’s behavior should not deviate from. Formally, a system-level specification
is a language ¢ C X7 .. A system C' C X7 & satisfies a specification ¢ C X7
if C C ¢. We denote the satisfaction relation of systems and specifications by
CE e

For a specification ¢ and a system C, the operational design domain of C
with respect to ¢, captures the set of "behavioral conditions” where the system C
is guaranteed to satisfy the specification ¢. In a discrete-time model, we define a
behavioral condition as a sequence of observations that can be observed off the
system. Formally, we define the operational design domain D of C' and ¢ as the
tuple D¢, = (Xops, 0bs, d), where Xy defines a set of observable inputs and
actions, obs: X5 . — X7, defines the relation between the system-level inputs
and actions and the observations of interest, and d € R¥ is the prediction horizon.
An operational design domain D defines a set [D] = {o | V7 € X7,. obs(T) =
o —Vr' e X% . 7.7 ¢ @} Intuitively, [D] defines the set of sequences of
observations that cannot be mapped to a trace of the system C' that violates the
specification ¢ in d steps. We highlight that our definition of ODDs allows us to
distinguish temporal interactions of the system with its environment, e.g. that
driving over road marks for a short time is not problematic, but that driving
over such an area for a prolonged time is problematic.

Our goal is synthesize a runtime monitor that captures the ODD of a system
and a specification with respect to a set of observations. A runtime monitor M
for an ODD D over observations X, is a program that implements a function
fa: X%, — B, such that, for every trace 7 € X%, . fas(7) if and only if 7 € [D]?.

In the rest of the paper will use fj; to also denote the set of traces 7 for which
fu (1) = true. We formalize the monitor synthesis problem for ODD as follows.

Problem 1 (Synthesizing Monitors for ODDs) For an operational de-
sign domain D¢, = (Xops, 0bs,d) and a class of monitors M over Xops,
find a monitor M € M, such that fpr = [D], or report that there does not
exist such monitor.

The ODD definition and the monitor extraction problem described above is
idealized. In the following, we give some details on why this idealized problem
statement is not well suited in practice and present a quantitative more practical
version of the problem.

3 We choose a Boolean codomain for monitors for simplicity reasons. Our approach
can be extended easily to quantitative domains, i.e., monitors with a robustness
semantics [9, 12].



3.2 Challenges in learning monitorable ODDs

The problem statement above yields monitors that are too conservative. In partic-
ular, it assumes the possibility of absolute safety: An observation trace is excluded
from the ODD if any system-level traces that violates the specification may yield
this observation trace. In line with safety standards, a practical formulation
of the problem relaxes the safety requirements to a more quantitative setting.
We observe that the occurrence of system-level traces which match a particular
observation trace may be rare. In this case, including their corresponding observa-
tions in the operational design domain may be admissible, even in safety-critical
domains. Furthermore, the class of monitors may not always include a monitor
for the exact ODD. Semantically speaking, the monitors within a class typically
cover only a subset of monitors over X ,;,. In this case, our goal would be to
search for an optimal monitor, e.g., one with the lowest misclassification rate. The
optimality of a monitor can be defined in terms of a measure v: P(X%, ) — R*
over sets of observation traces. In this case, the monitor learning problem is
converted to the following optimization problem. For a system C, a specification
v, and a class of monitors M, find a monitor M € M, such that,

M € argmin v(fy A [D]),
M’'eM

where A denotes the symmetric difference.

While the latter formulation overcomes the mismatch in Problem 1, by
searching for the optimal monitor, practically solving the problem is still faced
with some issues. First, the usage of a symmetric difference treats false positives
and false negatives equivalently. False positives are given as the set of traces of C
that satisfy ¢, but that are mistakenly identified by the monitor to be executions
that lead to a violation of the ODD. False negatives are traces of C' that violate
© but are not captured by the monitor as erroneous. In safety-critical settings,
this is inadequate, and in general, we want the ability to find monitors that favor
false positives over false negatives whenever possible. Another shortcoming of the
formulation above is that it requires defining correctness/optimality on sets of
traces over X,ps, which is often troublesome, as correctness/optimality is defined
in our setting as a system-level specification, i.e., on traces over Xy,;.

To address these challenges, in the next section, we present a quantitative
variant of the monitor learning problem for ODDs. It is based on a correctness
definition with respect to the traces over Xy, and thus transforms the problem
to minimizing a measure p on languages over Y,,,. This variant allows us to
search for optimal monitors within a given class of monitors and with respect to
given quantitative measure on the sets of system-level traces.

3.3 Quantitative monitor learning

Considering the challenges discussed above, a practical definition of the problem
of learning optimal monitorable ODDs needs to define optimality with respect to

1. system-level traces, i.e., traces over Xy



2. the rates of and biases towards false positives and negatives

One consequence of transforming the definition to measures over system-level
traces is the matter of predictiveness. To remind the reader, an ODD is defined
in terms of a prediction horizon d. The value of a monitor fj; for a trace 74,
depends the value of ¢ on system-level trace 74, of length |7ops| +d. The problem
definition should take this prediction horizon into account when defining the
measure over system-level traces. To accommodate for this difference in length, we
cut off all suffixes of length d of all traces in (C'N¢) and (C'NP). In the problem
definition, we will make use of the following notation: for a language L, we let L™,
for d € N, denote L= = {agpay ... ap_q | apay...ap € Lk € Nst. k—d >0}

Problem 2 (Optimal Monitor Synthesis for ODDs) Given an oper-
ational design domain D = (Xps, 0bs,d)c,, of a system C and a speci-
fication ¢ over X%, .. a class of monitors M over Y5, and a measure

p: P(X%,s) — RT, find a monitor M € M, such that,

M € argmin u(T, \ obsfl(fM/)) + wpy - w(Th N obsfl(fM/))
M'e M

for fized values wys, € RY and where T, = (CN¢)~¢ and T,, = (CNp)~2.

The problem statement above defines a monitor as optimizing a kind of loss
function with respect to system-level traces. The left side of the sum in the
objective function defines a measure over the false positives. The false-negatives
side of the objective function is weighted by wy,, that allows us to bias the search
towards false positives or false negatives.

Ezxample 1. A system C we are interested in capturing its ODD, could be the
image-based neural network from our motivating example. A monitor for the
ODD in this case can be defined over values of the weather, time of the day,
location, and road properties, representing a projection of general system-level
values, such as the state of the car, or the images received by the neural network
as well as its output. On top of system-level traces we define a measure p that
for a set I" returns the ratio of I" to the entire set of system-level traces.

Remark 1 (Relation between Problem 1 and Problem 2). In cases where the ODD
can be captured by a monitor in a given class and where absolute safety is
realizable, a solution to Problem 2 will indeed solve Problem 1.

3.4 Black-box vs. white-box settings

Problem 2 defines the optimality with respect to a system C, i.e., a set of traces.
In a white-box setting, one can assume access to a model defining the entire set
of traces and thus extract models for the sets 7}, and 7,, by evaluating ¢ over
C. In a black-box setting, this is in general infeasible. Obtaining an exhaustive
set of samples from a black-box model is not practical, considering the large
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Fig. 2. Extension of VERIFAI with the monitor learning framework

(potentially infinite) inputs domains autonomous systems are defined over. The
question that we need to raise at this point is how to sample from the black box
and how large this sample set must be to obtain monitors that do not overfit
the set of samples. Depending on the class of monitors at hand, we can rely on
theories from the field of probably approximate correct learning (PAC) [43] to
construct monitors that are closest to optimal with high confidence. In practice
this requires a large number of samples, considering that the class of monitors
needed to obtain good monitors is usually very large. In this paper, we suggest a
different approach based on conformance testing Here we rely on learning monitor
from a small set of samples performing a conformance test to check the quality
of the monitor (A testing PAC guarantee using theories such as the Hoeffding’s
inequality [25]). Relating this to Problem 2, the sets T}, and T,, are then defined
with respect to the sample set and the monitors learned are optimal with respect
to these sets. Conformance testing is done with respect to the measure p and the
sample sets are extended based on counterexamples obtained during testing. A
framework implementing this workflow is given next.

4 Framework

We present of counterexample-guided learning framework. We sketch the overall
architecture given in Figure 2 and give details on the individual components in
separate sections.

4.1 Main workflow

We integrate three major components into a joint framework: simulation-based
analysis, data generation and learning, and conformance testing. Given an exe-
cutable model of the system with the black-box (ML) component, a model of
the environment in which the system is to be executed, we use VERIFAT [14]
to run simulations and evaluate them according to a provided system-level
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specification, cf. Section 4.2. The evaluated simulations are then forwarded to
another component for data generation. The data generation component per-
forms several operations on top of the simulation traces, applying certain filters,
transformations, and slicing, cf. Section 4.3. Once the data has been prepared
for learning, a learner of our choice runs on top of the data. The outcome is an
(optimal) monitor implementing the ODD of the black-box component. Finally,
a conformance tester checks the quality of the monitor, cf. Section 4.4. Here, the
conformance tester may use further simulation runs, using VERIFAI, to search for
any counterexamples. If conformance testing succeeds, the framework terminates
and returns the so-far learned monitor. Otherwise, counterexamples found during
testing are passed to the data generating process to compute a new set of data
over which a new monitor is learned.

4.2 Simulation-based analysis using VERIFAI and SCENIC

VERIFAT is an open-source toolkit for the formal design and analysis of systems
that include AT or ML components [14]. VERIFAI follows a paradigm of formally-
driven simulation, using formal models of a system, its environment, and its
requirements to guide the generation of testing and training data. The high-level
architecture of VERIFAI is shown in Fig. 2. To use VERIFAI one first provides
an environment model which defines the space of environments that the system
should be tested or trained against. Environment models can be specified using
the SCENIC probabilistic modeling language [20]. A SCENIC program defines
a distribution over configurations of physical objects and their behaviors over
time. For example, Fig. 3 shows a SCENIC program for the lane keeping scenario
used in our case study. This program specifies a variety of semantic features
including time of day, weather, and the position and orientation of the car, giving
distributions for all of them. SCENIC also supports modeling dynamic behaviors
of objects, with syntax for specifying temporal relationships between events and
composing individual scenarios into more complex ones [21]. Finally, SCENIC is
also simulator- and application-agnostic, being successfully used in a variety of
CPS domains including autonomous driving [22], aviation [19], robotics [20], and
reinforcement learning agents for simulated sports [3]. In all these applications,
the formal semantics of SCENIC programs allow them to serve as precise models
of a system’s environment. For more examples we refer the reader to [20].

Once the abstract feature space has been defined, VERIFAI can search the
space using a variety of sampling algorithms suited to different applications
(e.g., these include passive samplers which seek to evenly cover the space, such
as low-discrepancy (Halton) sampling, as well as active samplers which use
the history of past tests to identify parts of the space more likely to yield
counterexamples). Each point sampled from the abstract feature space defines a
concrete test case which we can execute in the simulator. During the simulation,
VERIFAI monitors whether the system has satisfied or violated its specification,
which can be provided as a black-box monitor function or in a more structured
representation such as a formula of Metric Temporal Logic [32,35]. VERIFAI
uses the quantitative semantics of MTL [9, 12], allowing the search algorithms
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param weather = Uniform(’ClearNoon’, ’'CloudyNoon’,
"WetNoon’, ’'MidRainyNoon’
"ClearSunSet’)

lane = Uniform(*network.lanes)
start = OrientedPoint on lane.centerline
ego = Car at start,

with visibleDistance 60,
with behavior EgoBehavior (10)

Fig. 3. A SCENIC program specifying the environment for the lane keeping scenario

to distinguish between safe traces which are closer or farther from violating
the specification. The results of each test can be used to guide future tests as
mentioned above, and are also saved in a table for offline analysis, including
monitor generation.

4.3 Data generation

In this section, we discuss the training data generation process. Training data
is generated from the execution runs of several simulations through a process
consisting of two phases, mapping and segmentation.

Mapping The role of the mapper is to establish the connection between the
sequence of events collected during a simulation and the inputs to the monitor.
In general, the mapper consists of a projection and a filtering phase.

Projection involves mapping a sequence of simulation events to a (sub)set of
events that can be reliably observed at runtime. A monitor must be defined over
inputs that are observable by the system during runtime. Properties of other
entities in the environment may be known during simulation, but not during
runtime. Thus, the data collected at simulation must be projected to a stream of
observable data. We especially want to project the data onto reliable and trustable
data. Some data may be observable, but should not be used by a monitor. For
example, a monitor for validating the confidence in using the camera-based neural
network, can be based on the data of the weather condition and the time of
day, radar values, whereas it might be better to refrain from using the images
captured by the camera.

Filtering involve mapping traces to other traces using transformation functions
that may have an internal state (based on the history of events). Beyond projecting,
we may use the data available at runtime to estimate an unobservable system
or environment state by means of filtering approaches and then use this system
state (or statistics of this state) as an additional observable entity. For example,
to validate the conditions for our neural network, we may want to use data
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computed based on an aggregate model that evaluates the change in the heading
of the car.

At all times, mappers should preserve the order of events as received from
the evaluator and maintain the valuations of the system-level specification on
the original system-level trace.

Segmentation Rather than considering traces from the initial (simulation) state,
a sliding window approach can be used to generate traces o of fixed length starting
in any state encountered during the simulation. This approach is important to
avoid generating monitors that overly depend on the initial situation or monitors
that (artificially) depend on outdated events For example, the behavior of the
car in our lane keeping example, may depend on the frequency of obstacles along
the side of the road. Short-period occurrences may not cause major errors in
the CTE values or perhaps only for a short recoverable period of time. Frequent
occurrences may however cause a series of errors that could lead the car to exit
the lane. Therefore, the monitor does not need the entire history of data, as the
car will recover from small patches, but the monitor should switch from using
the neural network-based controller to manual control when the a long series of
obstacles on the side of the road is observed. In general, the length of segments
needs to be tuned based on the application at hand and the frequency in which
data is received. We remark that the loss of information due to ignoring events
earlier in the history can be partially alleviated by adding a state estimate to
the trace using an appropriate filter in the mapping phase.

After the table of training data is created by the segmentation process it
can be forwarded to any learning algorithm that generates a suitable artifact for
the monitor. We feed the traces that we obtain in a trace warehouse. From that
warehouse, we select traces to feed into the learner.

4.4 Conformance testing

The goal of conformance testing is to test the quality of our learned monitors.
This is done by testing the monitor on new independent simulation runs using
VERIFAI and checking whether a hypothesis with respect to the optimality
objective is met. If we pass the hypothesis, we have found a monitor. If not,
we augment our warehouse with the counterexamples found during testing. We
particularly look for cases, where the monitor failed to issue an alert, and the
specification was violated d steps later, where d is the prediction horizon, i.e, false
negatives. We also look for cases, where the monitor issued false alerts, triggering
unnecessary switches to manual control, i.e., false positives.

The result of the conformance tester is given relative to the set of sampled
traces in VERIFAI. For high confidence in the result of the conformance tester,
we need to make sure to test the monitor on a sufficient number of simulations.
For example, assuming that we sampled the simulation traces i.i.d. from the
actual distribution, and assuming that we are using a quantitative measure over
a o-algebra over traces, then using Hoeffding’s inequality, we can determine the
number of samples for given error and confidence measures. For more details on
this we refer the reader to [25].
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5 Experiments

We used our framework in an experiment for learning a monitor for the ODD
of the system with the image-based perception module used for lane keeping as
described in Section 2. The perception module is a convolutional neural network
(CNN) that for a given snapshot taken by a camera mounted at the front of the
car returns the estimated cross-track error to the centerline of the road. We are
interested in learning a monitor that based on features such as precipitation,
cloudiness, the sun angle, and location determines whether the system will be
safe in the presence of these conditions. In our experiment, we evaluate the latter
based on whether the car exits its lane. In the following, we provide some details
on the experimental setup and results.

5.1 Experimental Setup

Our setup uses VERIFAI's interface to the CARLA simulator [13]. The perception
module was executed as part of a closed-loop system whose computations were
sent to a client running inside CARLA. These are named values that represent
the simulator state, such as the position of the car, its velocity, heading, weather
conditions, other objects on the road, etc.

The environment is modelled by the SCENIC program depicted in Figure 3. The
sampler was able to choose simulations in different weather conditions, different
roads and initial positions on the road, and different sun angle, thus sampling
different times of the day and their shadowing effects. The behavior of the ego
car was implemented as a call to an external function OncCarAction, which
depending on the setting either used the perception-based controller for steering
or switched between perception-based control and a safe controller (mimicking
manual control) if we were testing a learned monitor.

To evaluate simulation runs we used a built-in CARLA specification for
detecting lane invasions. Initially, we started with 100 simulations. In each
conformance testing round, we used ca. 160 i.i.d sampled scenes from SCENIC.
The number of samples were computed using Hoeffding’s inequality [25] for
confidence value a = 0.05 and error-margin ¢ = 0.07. Lastly, we fixed the class
of decision trees as the class of our monitors and used a decision-tree learning
procedure provided by the sci-kit learning library?.

5.2 Results

We perform two experiments. The first is solely on static features, such as
weather and time of the day (using the sun angle attribute of CARLA), The
second additionally considers dynamic features such as the location and road
information. The results show the importance of dynamic features in capturing
adequate and monitorable ODDs.

* https://scikit-learn.org/
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Fig. 4. Results using only static features

We executed our framework for several iterations. In the initial iteration,
referred to by No Mon in Figure 4 and Figure 5, referring to one where we did
not use a monitor (or using a monitor that does not issue alerts), we evaluated
the performance of the network by calculating the rate of lane invasions over
the number of steps performed in 163 simulation runs. Each run included 250
simulation steps. We use the value as a reference for later iterations to determine
how the learned monitors in each iteration increase the safety of the system. The
initial lane invasion rate was 21%.

In each iteration that follows, a new monitor is learned (indicated by Mon
1 to Mon 4). For each monitor, we calculated the false negatives rate and the
false positives rate. The false negatives rate determines the lane invasion rate
in the presence of the monitor. We compare this value to the initial reference
rate to determine the increase in safety after using the monitor. To determine
the quality of the monitor we also looked at the false positives cases where the
monitor issued an unnecessary switch to the safe controller.

Results for static features In this first experiment, we only use values of the
static features of precipitation, cloudiness, and sun angle to train the monitor.

In the first iteration, while the monitor can reduce to rate of lane invasions
by 8%, the false positives rate of that monitor is very high. We apply another
round of learning, this time amending the warehouse with counterexamples, both
false positives, and negatives examples, collected during conformance testing. In
the second iteration, the process managed to learn a monitor with a lower false
positives rate, at the cost of increasing the false negatives rate. With further
iterations, the misclassification rate increased, due to an increase in the false
positives rate. From then on, the rates kept fluctuating aggressively. In Figure 4
we present the first five iterations.

The aggressive fluctuation is an indication that we have exhausted the role of
the given semantic features in learning an optimal monitor with respect to these
features. This in turn means that we need to extend the set of features with ones
that allow us to construct monitors that can distinguish more cases than with
the smaller set of features. For example, we noticed in some cases, that while
the monitors constructed in the above experiments captured well the weather
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Fig. 5. Results using static and dynamic features

conditions where the CNN will mostly keep the system safe, in some corner cases
such as entering a junction or a sharp turn, a lane invasion was occurring even
when adequate weather conditions were present. In the next experiment, we show
that we can improve on this, by adding location information, which will allow our
framework to distinguish these cases from the general weather cases and return
better quality monitors.

Results for dynamic features In this experiment, in addition to the features
of precipitation, cloudiness, and sun angle, we used features defining the road
id and the location of the car on this road. The latter two indirectly capture
dynamic features such as being at the end of the road or passing by certain
landmarks. Using the new additional features we were able to learn monitors
with lower false negatives and false positives rates than monitors solely based on
static features. While the rates fluctuate at the beginning, they start to stabilize
after the third iteration.

By looking at simulations using some of the monitors above, we did indeed
encounter situations where the monitor triggered an alert shortly before arriving
at a junction or sharp turn. These scenarios would not have been able to be
detected using the monitors from the previous experiment. Scenarios that could
still be not handled by the new monitors, were cases where driveways had a
similar texture and curvature as the roads. This emphasizes the importance of
feature engineering in the learning process of monitors. In the future, we plan to
build on our findings to further investigate this problem.

6 Related Work

Operational design domains A key aspect in assuring the safety of Al-based
autonomous systems is to clearly understand their capabilities and limitations.
It is therefore important to establish the operational design domains of the
system and its components and to communicate this information to the different
stakeholders [5, 30, 31]. Several works have been dedicated to investigating ways
of describing ODDs. Some of them are textual and follow a structured natural
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language format for describing ODDs [37, 48]. Others include a tabular description
defining a checklist of rules and functional requirements that need to be checked
to guarantee a safe operation of the system [45]. A generic taxonomy of the
different ODD representation formats is presented in BSI PAS 1883 standard [26].

While the approaches above concentrate on the design of languages for
describing ODDs, many works have concluded that there also is a necessity for
ODDs to be executable, e.g., to enable the construction of monitors that can be
used at runtime [7]. To this end, there has been a focus on developing machine-
readable domain-specific languages for implementing ODD, to enable specification,
verification, and validation of the ODD, both at design and runtime [27]. In
contrast to previous work, we go one step further and present a framework for
the automated construction of ODDs, i.e., for a given system component we learn
the ODD which is initially unknown. We especially introduce a formal definition
of monitorable ODD. Based on this definition we present a new quantitative
formalization of the problem learning optimal ODDs for black-box models and
solve the problem using a counterexample-guided learning approach.

Runtime verification Runtime verification and assurance techniques aim to ensure
that a system meets its (safety) specification at runtime [8, 16, 39]. A large body of
work in the runtime verification community has been dedicated to the development
of specification languages for monitoring and investigating efficient monitoring
algorithms for these languages. Most of the work on formal runtime monitoring is
based on temporal logics [18, 38, 33]. The approaches vary between inline methods
that realize a formal specification as assertions added to the code to be monitored
[38], and outline approaches that separate the implementation of the monitor
from the system under investigation [18]. Based on these approaches and with the
rise of real-time temporal logics such as MTL [32] and STL [35], a series of works
introduced new algorithms and tools for the monitoring of real-time properties
[4,10,46,17]. Neural networks themselves may be used as monitors [6]. All these
monitoring can be adopted in our framework and can be used as monitoring
tools for evaluating runtime properties during simulation. Runtime monitoring
techniques can also be applied to investigate whether the input to a known neural
network is within its support [34].

Furthermore, the literature also includes a list of frameworks for designing
systems with integrated runtime assurance modules that are guaranteed to satisfy
these criteria. An example of such a framework is SOTER [8,44], a runtime
assurance framework for building safe distributed mobile robots. A SOTER
program is a collection of asynchronous processes that interact with each other
using a publish-subscribe model of communication. A runtime assurance module
in SOTER is based on the famous Simplex architecture [42] and consists of a safe
controller, an advanced controller, and a decision module. A key advantage of
SOTER is that it also allows for straightforward integration of many monitoring
frameworks. Another approach based on Simplex is the ModelPlex framework
[36]. ModelPlex combines design-time verification of CPS models with runtime
validation of system executions for compliance with the model to build correct by
construction runtime monitors which validate at runtime any assumption on the
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model collected at design time, i.e., whether or not the behavior of the system
complies with the verified model and its assumptions. In case an error is detected,
a fail-safe fallback procedure is initiated.

Counterexample-guided synthesis Our learning and conformance testing loop is a
quantitative extension of the general line of work of inductive synthesis [28, 29].
We particularly use a quantitative extension of counterexample-guided synthesis
to learn a monitorable ODD by querying an oracle, in our case the conformance
tester. Inductive synthesis is heavily used in the context of programming languages
but can also be used for perception modules and control [24]. Rather than learning
a program, we learn a monitor. The main idea here is that rather than learning
a complete monitor, we have a skeleton of the monitor that may be extracted
from domain-specific knowledge or learned.

Another direction for monitor synthesis is the paradigm of introspective en-
vironment modeling (IEM) [41,40]. In IEM, one considers the situation where
the agents and objects in the environment are substantially unknown, and thus
the environment variables are not all known. In such cases, we cannot easily
define a SCENIC program for the environment. The only information one has is
that the environment is sensed through a specified sensor interface. One seeks
to synthesize an assumption on the environment, monitorable on this interface,
under which the desired specification is satisfied. While very preliminary steps
on IEM have been taken [40], significant work remains to be done to make this
practical, including efficient algorithms for monitor synthesis and the development
of realistic sensor models that capture the monitorable interface.

7 Conclusion

We presented a formal definition of monitorable operational design domains and
a formalization of the problem of learning monitors for the operational design
domains of black-box (ML) components. We discussed the need for a quantitative
version of the problem and presented a quantitative counterexample-guided
learning framework for solving the problem. Our experiments show, how the
introduced framework can be used to learn monitors on a monitorable feature
space that prevent the system from using a critical component when the system
exits its ODD. Learning monitors of high quality requires a lot of effort on
the feature engineering side. Furthermore, learning monitors may be subject
to different objectives, e.g., accuracy vs efliciency. In the future we plan on
investigating the latter problems further with the goal of providing the user with
adequate feedback that helps in the selection process of monitors.
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