
Formal Inductive Synthesis
-- Theory and Applications
Formal Inductive Synthesis
-- Theory and Applications

Sanjit A. Seshia

EECS Department
UC Berkeley

EECS 219C
April 22, 2019

– 2 –

Formal SynthesisFormal Synthesis

 Given:
– Class of Artifacts C
– Formal (mathematical) Specification 

 Find f  C that satisfies 

 Example 1:
– C: all affine functions f of x  R
– : x. f(x)  x + 42

 Example 2: SyGuS

– 3 –

Induction vs. DeductionInduction vs. Deduction

 Induction: Inferring general rules (functions)
from specific examples (observations)
– Generalization

 Deduction: Applying general rules to derive
conclusions about specific instances
– (generally) Specialization

 Learning/Synthesis can be Inductive or
Deductive or a combination of the two

– 4 –

Inductive SynthesisInductive Synthesis

 Given
– Class of Artifacts C
– Set of (labeled) Examples E (or source of E)
– A stopping criterion 

 May or may not be formally described

 Find, using only E, an f  C that meets 

 Example:
– C: all affine functions f of x  R
– E = {(0,42), (1, 43), (2, 44)}
–  -- find consistent f

– 5 –

Inductive SynthesisInductive Synthesis

 Given
– Class of Artifacts C
– Set of Examples E (or source of E)
– A stopping criterion 

 Find using only E an f  C that meets 

 Example:
– C: all affine functions f of x  R
– E = {(0,42), (1, 43), (2, 45)}
–  -- find consistent f

– 6 –

Inductive SynthesisInductive Synthesis

 Example:
– C: all predicates of the form ax + by  c
– E = {(0,42), (1, 43), (2, 45)}
–  -- find consistent f

 One such: -x + y  42
 Another: -x + y  0
 Which one to pick: need to augment ?

– 7 –

Machine LearningMachine Learning

 "A computer program is said to
learn from experience E with
respect to some class of tasks T
and performance measure P, if
its performance at tasks in T, as
measured by P, improves with
experience E.”
- Tom Mitchell [1998]

– 8 –

Machine Learning: Typical Setup Machine Learning: Typical Setup

Given:
 Domain of Examples D
 Concept class C

– Concept is a subset of D
– C is set of all concepts

 Criterion  (“performance measure”)

Find using only examples from D, f  C meeting 

– 9 –

Inductive Bias in Machine Learning Inductive Bias in Machine Learning

“Inductive bias is the set of
assumptions required to
deductively infer a concept
from the inputs to the learning
algorithm.”

Example:
C: all predicates of the form ax + by  c
E = {(0,42), (1, 43), (2, 45)}
 -- find consistent f

Which one to pick: -x + y  42 or -x + y  0
Inductive Bias resolves this choice
• E.g., pick the “simplest one” (Occam’s razor)

– 10 –

Formal Inductive Synthesis
(Initial Defn)
Formal Inductive Synthesis
(Initial Defn)

 Given:
– Class of Artifacts C
– Formal specification 
– Domain of examples D

 Find f  C that satisfies  using only elements of D
– i.e. no direct access to , only to elements of D

representing 

 Example:
– C: all affine functions f of x  R
– D = R2

– : x. f(x)  x + 42

– 11 –

ImportanceImportance

Formal Inductive Synthesis is Everywhere!
– Many problems can be solved effectively

when viewed as synthesis

Particularly effective in various tasks in
Formal Methods

For the rest of this lecture series, for brevity we will
often use “Inductive Synthesis” to mean “Formal
Inductive Synthesis”

– 12 –

Inductive Synthesis for Formal
Methods
Inductive Synthesis for Formal
Methods

 Modeling / Specification
– Generating environment/component models
– Inferring (likely) specifications/requirements

 Verification
– Synthesizing verification/proof artifacts such as

inductive invariants, abstractions, interpolants,
environment assumptions, etc.

 Synthesis (of course)

– 13 –

Questions of InterestQuestions of Interest

 How can inductive synthesis be used to solve
other (non-synthesis) problems?

 Is there a theory of formal inductive synthesis
distinct from (traditional) machine learning?

 Is there a complexity/computability theory for
formal inductive synthesis?

– 14 –

Questions of InterestQuestions of Interest

 How can inductive synthesis be used to solve
other (non-synthesis) problems?

 Reducing a Problem to Synthesis
 Is there a theory of formal inductive synthesis

distinct from (traditional) machine learning?
 Oracle-Guided Inductive Synthesis (OGIS)
 Is there a complexity/computability theory for

formal inductive synthesis?
 Yes! Can compare different OGIS techniques

– 15 –

Outline for this LectureOutline for this Lecture

 Examples of Reduction to Synthesis
– Specification
– Verification

 Differences between Inductive Synthesis and
Machine Learning

 Oracle-Guided Inductive Synthesis
– Examples, CEGIS

 Theoretical Analysis of CEGIS
– Properties of Learner
– Properties of Verifier

– 16 –

Further ReadingFurther Reading

 S. A. Seshia, “Combining Induction, Deduction,
and Structure for Verification and Synthesis.”,
Proc. IEEE 2015, DAC 2012
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-

dac12.html
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-

pieee15.html

 S. Jha and S. A. Seshia, “A Theory of Formal
Synthesis via Inductive Learning”
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-

arxiv15.html
https://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-

acta17.html

– 17 –

Reductions to SynthesisReductions to Synthesis

– 18 –

Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive invariants
 Abstraction functions / abstract models
 Auxiliary specifications (e.g., pre/post-conditions,

function summaries)
 Environment assumptions / Env model / interface

specifications
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional proofs
 Theory lemma instances in SMT solving
 Patterns for Quantifier Instantiation
 …

– 19 –

Example Verification ProblemExample Verification Problem

 Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
 Property:  = G (y  1)
 Attempted Proof by Induction:

y  1  x’ = x+y  y’ = y+x  y’  1
 Fails. Need to Strengthen Invariant: Find  s.t.

x = 1  y = 1  
  y  1  x’ = x+y  y’ = y+x  ’  y’  1

– 20 –

Example Verification ProblemExample Verification Problem

 Transition System
– Init: I

x = 1  y = 1
– Transition Relation: 

x’ = x+y  y’ = y+x
 Property:  = G (y  1)
 Attempted Proof by Induction:

y  1  x’ = x+y  y’ = y+x  y’  1
 Fails. Need to Strengthen Invariant: Find  s.t.

x  1  y  1  x’ = x+y  y’ = y+x  x’  1  y’  1
 Safety Verification  Invariant Synthesis

– 21 –

One Reduction from Verification to
Synthesis
One Reduction from Verification to
Synthesis

SYNTHESIS PROBLEM
Synthesize  s.t.

I    
      ’  ’

VERIFICATION PROBLEM
Does M satisfy ?

NOTATION
Transition system M = (I, )
Safety property  = G()

– 22 –

Two Reductions from Verification to
Synthesis
Two Reductions from Verification to
Synthesis

NOTATION
Transition system M = (I, ), S = set of states
Safety property  = G()

SYNTHESIS PROBLEM #1
Synthesize  s.t.

I    
      ’  ’

VERIFICATION PROBLEM
Does M satisfy ?

SYNTHESIS PROBLEM #2
Synthesize  : S  Ŝ where

(M) = (I, )
s.t.

(M) satisfies 
iff

M satisfies 

ˆ ˆ

– 23 –

Common Approach for both:
Inductive Synthesis
Common Approach for both:
Inductive Synthesis

Synthesis of:-

 Inductive Invariants
– Choose templates for invariants
– Infer likely invariants from tests (examples)
– Check if any are true inductive invariants, possibly

iterate

 Abstraction Functions
– Choose an abstract domain
– Use Counter-Example Guided Abstraction

Refinement (CEGAR)

– 24 –

Counterexample-Guided Abstraction
Refinement is Inductive Synthesis
Counterexample-Guided Abstraction
Refinement is Inductive Synthesis

Invoke
Model

Checker
Done

Valid

Counter-
example

Check
Counterexample:

Spurious?
Spurious

Counterexample

YES

Abstract
Domain

System
+Property

Initial
Abstraction

Function

Done
NO

Generate
Abstraction

Abstract Model
+ Property

Refine
Abstraction

Function

New Abstraction Function

Fail

SYNTHESIS VERIFICATION

[Anubhav Gupta, ‘06]

– 25 –

CEGAR = Counterexample-Guided
Inductive Synthesis (of Abstractions)
CEGAR = Counterexample-Guided
Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE VERIFY

Candidate
Artifact

Counterexample

Verification SucceedsSynthesis Fails

Structure Hypothesis (“Syntax-Guidance”),
Initial Examples

– 26 –

Lazy SMT Solving performs
Inductive Synthesis (of Lemmas)
Lazy SMT Solving performs
Inductive Synthesis (of Lemmas)

Invoke
SAT

Solver
Done

UNSAT

SAT
(model)

Invoke Theory
Solver“Spurious

Model”

UNSAT

SMT
Formula

Initial
Boolean

Abstraction

Done
SAT

Generate
SAT

Formula

SAT Formula

Proof
Analysis

Blocking Clause/Lemma

SYNTHESIS VERIFICATION

(“Counter-
example”)

– 27 –

Other ExamplesOther Examples

 Invariant Generation via ICE Learning [P. Garg & M.
Parthasarathy]

 Invariant Generation, Interpolation via Machine
Learning + SMT Solving [R. Sharma, A. Aiken, et al.]

and many more…

– 28 –

Reducing Specification to SynthesisReducing Specification to Synthesis

 Formal Specifications difficult for non-experts
 Tricky for even experts to get right!
 Yet we need them!

“A design without specification cannot be right or
wrong, it can only be surprising!”

– paraphrased from [Young et al., 1985]

 Specifications are crucial for effective testing,
verification, synthesis, …

– 29 –

Reduction of Specification to
Synthesis
Reduction of Specification to
Synthesis
 VERIFICATION: Given (closed) system M, and

specification , does M satisfy ?

 Suppose we don’t have (a good enough) .

 SYNTHESIS PROBLEM: Given (closed) system
M, find specification  such that M satisfies .
– Is this enough?

– 30 –

ExampleExample

a b

Let a and b be atomic propositions.

What linear temporal logic formulas does the above system
satisfy?

– 31 –

Reduction of Specification to
Synthesis
Reduction of Specification to
Synthesis
 VERIFICATION: Given (closed) system M, and

specification , does M satisfy ?

 SYNTHESIS PROBLEM: Given (closed) system M
and class of specifications C, find specification 
in C such that M satisfies .
– C can be defined syntactically (e.g. with a

template)
– E.g. G(_  X _)

– 32 –

Reduction of Specification to
Synthesis
Reduction of Specification to
Synthesis

 VERIFICATION: Given (closed) system M, and
specification , does M satisfy ?

 SYNTHESIS PROBLEM: Given (closed) system M and
class of specifications C, find “tightest” specification
 in C such that M satisfies .
– Industrial Tech. Transfer Story: Requirement Synthesis for

Automotive Control Systems [Jin, Donze, Deshmukh, Seshia,
HSCC 2013, TCAD 2015]
http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html

– Implemented in Breach toolbox by A. Donze

– 33 –

Specification MiningSpecification Mining

 Inductive Synthesis of Specifications

 Term coined by Ammons et al., POPL 2002 (?)

 See recent Ph.D. dissertation by Wenchao Li:
“Specification Mining: New Formalisms,
Algorithms and Applications”

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/
EECS-2014-20.html

– 34 –

Two Applications of Inductive
Synthesis of Specifications
Two Applications of Inductive
Synthesis of Specifications

1. Requirements Mining for Closed-Loop Control
Systems

2. Environment Assumptions for Reactive
Synthesis [see Wenchao Li thesis]

 Relevance to Robotics/Cyber-Physical Systems

Challenges for Verification of Automotive
Control Systems
 Closed‐loop setting very complex
 software + physical artifacts
 nonlinear dynamics
 large look‐up tables
 large amounts of switching

 Requirements Incomplete/Informal
 Specifications often created concurrently
with the design!

 Designers often only have informal
intuition about what is “good behavior”
 “shape recognition”

35

Experimental Engine
Control Model

Solution: Requirements Mining

It’s working, but I don’t
understand why!

Requirements Expressed in Signal Temporal Logic

(STL) [Maler & Nickovic, ‘04]

Value added by mining:

 Mined Requirements become useful

documentation

 Use for code maintenance and revision

 Use during tuning and testing

36

 Designer reviews mined requirements
 “Settling time is 6.25 ms”
 “Overshoot is 100 units”
 Expressed in Signal
Temporal Logic [Maler & Nickovic, ‘04]

 Tool extracts properties of closed‐loop design

Control Designer’s Viewpoint of the Method

6.25ms

100

37

Signal Temporal Logic (STL)
• Extension of Linear Temporal Logic (LTL) and Variant
of Metric Temporal Logic (MTL)
– Quantitative semantics: satisfaction of a property over a
trace given real‐valued interpretation

– Greater value more easily satisfied
– Non‐negative satisfaction value  Boolean satisfaction

• Example: “For all time points between 60 and 100,
the absolute value of x is below 0.1”

38
0 100

1

-0.1
+0.1

60

x

t

CounterExample Guided Inductive Synthesis

Find “Tightest”
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors
that do NOT satisfy
these
requirements?

Settling Time is 5 ms
Overshoot is 5 KPa
Upper Bound on x is 3.6

1.

39

Experimental Engine
Control Model

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]

Settling Time is 5.3 ms
Overshoot is 5.1 KPa
Upper Bound on x is 3.8

Settling Time is … ms
Overshoot is … KPa
Upper Bound on x is …

CounterExample Guided Inductive Synthesis

Find “Tightest”
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors
that do NOT satisfy
these
requirements?

Counterexamples

1.

40

Experimental Engine
Control Model

CounterExample Guided Inductive Synthesis

Find "Tightest"
Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors
that do NOT satisfy
these
requirements?

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

NO

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

Mined
Requirement

Counterexamples

1.

41

Experimental Engine
Control Model

Experimental Results on Industrial Airpath
Controller

• Found max overshoot with 7000+ simulations in 13 hours
• Attempt to mine maximum observed settling time:

– stops after 4 iterations
– gives answer tsettle = simulation time horizon (shown in trace below)

Experimental Engine
Control Model

42

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]

Mining can expose deep bugs

• Uncovered a tricky bug
– Discussion with control designer revealed it to be a real bug
– Root cause identified as wrong value in a look‐up table, bug
was fixed

• Duality between spec mining and bug‐finding:
– Synthesizing “tightest” spec could uncover corner‐case bugs
– Looking for bugs Mine for negation of bug

Experimental Engine
Control Model

43

– 44 –

Theoretical Aspects of
Formal Inductive Synthesis
Theoretical Aspects of
Formal Inductive Synthesis

– 45 –

CEGIS = Learning from Examples &
Counterexamples
CEGIS = Learning from Examples &
Counterexamples

INITIALIZE

LEARNING
ALGORITHM

VERIFICATION
ORACLE

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

– 46 –

How is Formal Inductive Synthesis different
from (traditional) Machine Learning?

– 47 –

Comparison*Comparison*

Feature Formal Inductive
Synthesis Machine Learning

Concept/Program
Classes

Programmable,
Complex Fixed, Simple

Learning
Algorithms

General-Purpose
Solvers Specialized

Learning Criteria Exact, w/ Formal
Spec

Approximate, w/
Cost Function

Oracle-Guidance Common (can select
Oracle)

Rare (black-box
oracles)

* Between typical inductive synthesizer and machine learning algo

[see also, Jha & Seshia, 2015]

– 48 –

Formal Inductive Synthesis Formal Inductive Synthesis

 Given:
– Class of Artifacts C -- Formal specification 
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f  C that satisfies 

– i.e. no direct access to D or 

 Example:
– C: all affine functions f of x  R = D
– O = {(pos-witness, x satisfying )}
– : x. f(x)  x + 42

– 49 –

Oracle InterfaceOracle Interface

 Generalizes the simple model of sampling
positive/negative examples from a corpus
of data

 Specifies WHAT the learner and oracle do
 Does not specify HOW the oracle/learner

is implemented

LEARNER ORACLE

– 50 –

Common Oracle Query Types
(for trace property )
Common Oracle Query Types
(for trace property )

LEARNER ORACLE

Positive Witness
x  , if one exists, else 

Negative Witness
x  , if one exists, else 

Membership: Is x  ?
Yes / No

Equivalence: Is f = ?
Yes / No + x  f

Subsumption/Subset: Is f ⊆ ?
Yes / No + x  f \ 

Distinguishing Input: f, X ⊆ f
f’ s.t. f’ ≠f  X ⊆ f’, if it exists;

o.w. 

– 51 –

Formal Inductive Synthesis Formal Inductive Synthesis

 Given:
– Class of Artifacts C -- Formal specification 
– Domain of examples D
– Oracle Interface O

 Set of (query, response) types
 Find using only O an f  C that satisfies 

– i.e. no direct access to D or 

 How do we solve this?

Design/Select:

– 52 –

Oracle-Guided Inductive Synthesis
(OGIS)
Oracle-Guided Inductive Synthesis
(OGIS)
 A dialogue is a sequence of (query, response)

confirming to an oracle interface O
 An OGIS engine is a pair <L, T> where

– L is a learner, a non-deterministic algorithm
mapping a dialogue to a concept c and query q

– T is an oracle/teacher, a non-deterministic algorithm
mapping a dialogue and query to a response r

 An OGIS engine <L,T> solves an FIS problem if
there exists a dialogue between L and T that
converges in a concept f  C that satisfies 

– 53 –

Language Learning in the LimitLanguage Learning in the Limit
[E.M. Gold, 1967]
 Concept = Formal Language
 Class of languages identifiable

in the limit if there is a learning
procedure that, for each
language in that class, given an
infinite stream of strings, will
eventually generate a
representation of the language.

 Results:
– Cannot learn regular languages,

CFLs, CSLs using just positive
witness queries

– Can learn using both positive &
negative witness queries (assuming
all examples eventually enumerated)

– 54 –

Query-Based LearningQuery-Based Learning
[Queries and Concept Learning, 1988]
[Queries Revisited, 2004]
 First work on learning based on

querying an oracle
– Supports witness, equivalence, membership,

subsumption/subset queries
– Oracle is BLACK BOX
– Oracle determines correctness: No separate

correctness condition or formal specification
– Focus on proving complexity results for

specific concept classes
 Sample results

– Can learn DFAs in poly time from
membership and equivalence queries

– Cannot learn DFAs or DNF formulas in poly
time with just equivalence queries

Dana Angluin

– 55 –

Examples of OGISExamples of OGIS

 L* algorithm to learn DFAs: counterexample-guided
– Membership + Equivalence queries

 CEGIS used in SyGuS solvers
– (positive) Witness + Counterexample/Verification

queries
 CEGIS for Hybrid Systems

– Requirement Mining [HSCC 2013]
– Reactive Model Predictive Control [HSCC 2015]

 Two different examples:
– Learning Programs from Distinguishing Inputs [Jha

et al., ICSE 2010]
– Learning LTL Properties for Synthesis from

Counterstrategies [Li et al., MEMOCODE 2011]

– 56 –

Revisiting the ComparisonRevisiting the Comparison

Feature Formal Inductive
Synthesis

Machine
Learning

Concept/Program
Classes Complex Simple

Learning
Algorithms

General-Purpose
Solvers Specialized

Learning Criteria Exact, w/ Formal
Spec

Approximate, w/
Cost Function

Oracle-Guidance Common (can
control Oracle)

Rare (black-box
oracles)

What can we prove about
convergence/complexity of formal
inductive synthesis for:
• General concept classes (e.g.,

recursive languages)
• Different properties of “general-

purpose” learners
• Different properties of (non black-

box) oracles

– 57 –

Query Types for CEGISQuery Types for CEGIS

LEARNER ORACLE
Positive Witness

x  , if one exists, else 

Equivalence: Is f = ?
Yes / No + x  f

Subset: Is f ⊆ ?
Yes / No + x  f \ 

• Finite memory vs
Infinite memory

• Type of counter-
example given

Concept class: Any set of recursive languages

– 58 –

QuestionsQuestions

 Convergence: How do properties of the learner
and oracle impact convergence of CEGIS?
(learning in the limit for infinite-sized concept
classes)

 Sample Complexity: For finite-sized concept
classes, what upper/lower bounds can we derive
on the number of oracle queries, for various
CEGIS variants?

– 59 –

Problem 1: Bounds on
Sample Complexity

Problem 1: Bounds on
Sample Complexity

– 60 –

Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a
teacher must reveal to uniquely identify any
concept from a concept class

[Goldman & Kearns, ‘90, ‘95]

– 61 –

Teaching a 2-dimensional BoxTeaching a 2-dimensional Box

+

+

-

-

-

-

What about N dimensions?

– 62 –

Teaching DimensionTeaching Dimension

 The minimum number of (labeled) examples a
teacher must reveal to uniquely identify any
concept from a concept class

TD(C) = max c  C min   (c) ||
where

C is a concept class
c is a concept
 is a teaching sequence (uniquely identifies concept c)
 is the set of all teaching sequences

– 63 –

Theorem: TD(C) is lower bound on
Sample Complexity
Theorem: TD(C) is lower bound on
Sample Complexity
 OGIS: TD gives a lower bound on number of

counterexample queries to solve FIS problem
 Finite TD is necessary for termination

– If C is finite, TD(C)  |C|-1
 Finding Optimal Teaching Sequence is NP-hard

(in size of concept class)
– Hence also finding optimal query sequence for

OGIS
– But heuristic approach works well (“learning from

distinguishing inputs”)
 Open Problems: Compute TD for common

classes of SyGuS problems

[see Jha & Seshia, 2015]

– 64 –

Problem 2:
Convergence of Counterexample-

guided loop
with positive witness and

counterexample/verification queries

Problem 2:
Convergence of Counterexample-

guided loop
with positive witness and

counterexample/verification queries

– 65 –

Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)
Learning -1  x  1 /\ -1  y  1
(C = Boxes around origin)

(0,0)

Arbitrary Counterexamples may not work
for Arbitrary Learners

– 66 –

Learning -1  x,y  1 from Minimum
Counterexamples (dist from origin)
Learning -1  x,y  1 from Minimum
Counterexamples (dist from origin)

(0,0)

-

-

-

-

– 67 –

Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N
– Maps each example x to a natural number
– Imposes total order amongst examples

 CEGIS: Arbitrary counterexamples
– Any element of f  

 MinCEGIS: Minimal counterexamples
– A least element of f   according to size
– Motivated by debugging methods that seek to find

small counterexamples to explain errors & repair

– 68 –

Types of CounterexamplesTypes of Counterexamples

Assume there is a function size: D  N

 CBCEGIS: Constant-bounded counterexamples
(bound B)
– An element x of f   s.t. size(x) < B
– Motivation: Bounded Model Checking, Input

Bounding, Context bounded testing, etc.

 PBCEGIS: Positive-bounded counterexamples
– An element x of f   s.t. size(x) is no larger than

that of any positive example seen so far
– Motivation: bug-finding methods that mutate a

correct execution in order to find buggy behaviors

– 69 –

Summary of ResultsSummary of Results
[Jha & Seshia, SYNT’14; TR‘15]

– 70 –

Open ProblemsOpen Problems

 For Finite Domains: What is the impact of type
of counterexample and buffer size to store
counterexamples on the speed of termination of
CEGIS?

 For Specific Infinite Domains (e.g., Boolean
combinations of linear real arithmetic): Can we
prove termination of CEGIS loop?

– 71 –

Summary Summary

 Formal Synthesis
 Verification by Reduction to Synthesis
 Formal Inductive Synthesis

– Counterexample-guided inductive synthesis
(CEGIS)

– General framework for solution methods: Oracle-
Guided Inductive Synthesis (OGIS)

– Theoretical analysis
 Lots of potential for future work!

