EECS 219C: Formal Methods

Explicit-State Model Checking:
Additional Material

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: G. Holzmann

Checking if M satisfies ¢: Steps

1.

2.

3.

4.

S. A. Seshia

Compute Buchi automaton B corresponding to
~¢

Compute the Buchi automaton A
corresponding to the system M

Compute the synchronous product P of A and
B

Product computation defines “accepting” states
of P based on those of B

Check if some “accepting” state of P is visited
infinitely often

If so: we found a bug
If not, no bug in M

Example of Step 2

\
WWZ“GDZM m
/ im} %
1]

Kripke structure if ﬁ

What's different between

the two? What's the same? Corresponding Buchi automaton
(transitions on labels not shown go
S. A. Seshia to a non-accepting sink state “err”)s

Step 1: Buchi Automaton from

Kripke Structure
* Given: Kripke structure M = (S, S,, R, L)
— L :S > 2A7, AP — set of atomic propositions

e Construct Buchi automaton

A= (X, SuU{ag err}, A, {og}, S

— Alphabet, ¥ = 2AP

— Set of states = S U {a,, err}
* 0, IS a special start state, epf’is a (sink) error state

— All states are accepting €xcept err

— A is transition relation of A such that:
 A(s,0,8)Iiff R(s, s’) and ¢ = L(s')

* Aoy, 0,8)Iiffs € Sy and o = L(s)

Need to also add transitions to dummy error state err for other symbols
c not covered above

{0}) where:

S. A. Seshia

Step 2: Compute synchronous
product of A with B

A and B are both Buchi automata with the
same alphabet

* Synchronous product:
—A=(Z, Sq, Ay, {Sp}s Si\{err}) (erris dummy error state)
-B=(Z, Sy Ay {so}, F)
— Product P = (£, S; X S,, A, {Sp, Sp }» F)
* A((Sq, S3), 0, (81, 82)) = Aq (84, 0, 8¢) A Ay(Sy, 0, 85)
* (8,8, e Fiffs,zerrns, e F

_ [Note: we assume above that they share the same alphabet X]
S. A. Seshia

Example of Step 2

Property ¢: F g

S. A. Seshia

Step 3: Checking if some state is
visited infinitely often

* Suppose | show you the graph
corresponding to the product automaton

* What graph property corresponds to
“visited infinitely often™?

1 G

p

S. A. Seshia

Step 3: Checking if some state is
visited infinitely often

* Suppose | show you the graph
corresponding to the product automaton

* What graph property corresponds to
“visited infinitely often™?
— Checking for a cycle with an accepting state

— We also need to check that the accepting
state is reachable from the initial state

S. A. Seshia

DFS + cycle detection

 How can we modify DFS to do cycle
detection?

S. A. Seshia

DFS + cycle detection

 How can we modify DFS to do cycle
detection?

— Find strongly connected components, and then
check if there’'s one with an accepting state
[But: we don'’t have the graph with us to start with]

— Use DFS to find an accepting state s

« On finding one, explore its child nodes.

« |f a child node is on the stack, or if s has a self loop,
we're done [Easy to see why]

 Else, do a new DFS starting from s to see if you can
reach it again [Why will this work? Any modifications to

the basic DFS needed?]
« SPIN’s “nested DFS” algorithm

S. A. Seshia 10

Checking if M satisfies ¢: Steps

1. Compute Buchi automaton B corresponding to
~¢

2. Compute the Buchi automaton A corresponding
to the system M

3. Compute the synchronous product P of A and B

* Product computation defines “accepting” states of
P based on those of B

4. Check if some "accepting” state of P is visited
infinitely often

« |If so: we found a bug (What does a counterexample
look like?)

 Ifnot, nobugin M

S. A. Seshia 11

What if our property is not LTL"?

* Let's say the property is specified directly as a
Buchi automaton B

* Then, to check if the system A satisfies the
property, we use the same algorithm as before:
— Compute complement of B: call it B’
— Compute sync. product of A and B’
— Check for loops involving “accepting” states

 IMP: Buchi automata are closed under
complementation, union, intersection

* Nondeterministic Buchi automata are strictly more

expressive than deterministic Buchi automatal!
S. A. Seshia

12

Time/Space Complexity

» Size measured in terms of:
— N, — num of states in system automaton

— N — num of states in property automaton (for
complement of the property we want to prove)

— Ng — num of bits to represent each state
— Ng — num transitions in product automaton
— Total size = N = (N, * Ng * Ng) + N
* Checking G p properties w/ DFS
— Time: ? Space: ?

* Checking arbitrary (liveness) properties w/ nested
DFS

— Time: ? Space: ?

S. A. Seshia

13

Time/Space Complexity

» Size measured in terms of:
— N, — num of states in system automaton

— N — num of states in property automaton (for
complement of the property we want to prove)

— Ng — num of bits to represent each state
— Ng — num transitions in product automaton
— Total size = N = (N, * Ng * Ng) + N
* Checking G p properties w/ DFS
— Time: O(N*L) [X] Space: O(N) {L — lookup time to

check if state visited already}

* Checking arbitrary (liveness) properties w/ nested
DFS

— Time: O(N*L) [2X] Space: O(N)

S. A. Seshia

14

Optimizations

« Complexity is a function of Ng + N, * Ng ™ Ng
* Natural strategy to reduce time/space is to
reduce:

— Ng,N, = Partial-order reduction, Abstraction
(later lecture)

— Ng = not really needed, Ng is usually small
— Ng = State compression techniques

S. A. Seshia 15

Partial Order Reduction

* Edges of automata correspond to “actions”
taken by the automaton

— Assume that you label each edge with its
corresponding action
* |dea: Some actions are independent of each
other

— E.g. “internal actions™ of systems composed
asynchronously

— You can permute them without changing the
end state reached

* Both interleavings yield same end state

S. A. Seshia 16

An Example

Initial state: x=y=9g=0

Shm\ﬂ'nj n (So)jco))w\n@)f e The
‘)ossi\o\e e xeoutions 7

S. A. Seshia

17

Some Sample Properties: Are they
preserved by P-O Reduction?

* F(g9.2)

* G(x,y)

Key point: The property matters in deciding
dependencies!

Atomic propositions that appear in the temporal logic
property are termed “relevant atomic propositions”
S. A. Seshia

18

Implementing P-O Reduction

At each state s, some set of actions is enabled:
enabled(s)

« Of this set, we want to explore only a subset
ample(s) s.t.
— We explore a subset of states and transitions

— The property holds for the reduced system iff it holds
for the full system

* Pick an arbitrary element of ample(s) and
execute that action

* QN: How to compute ample(s)?

S. A. Seshia

19

Independence and Invisibility

* Important properties of actions a, b:
independence & invisibility
* Independence

— Enabledness: Action a should not disable b, and
vice-versa

— Commutativity: a(b(s)) = b(a(s))
* Invisibility
—a and b should not affect the values of any
‘relevant’ atomic propositions in the LTL property

S. A. Seshia

20

Problem

« Computing ample(s) exactly is as hard as
computing the reachable states of the
system!

— One of the conditions defining ample(s):
Along every path starting at s, an action a

dependent on action b in ample(s) cannot be
executed before b

* See [Ch. 10, Clarke,Grumberg,Peled] for a
proof

S. A. Seshia 21

Computing ample(s)

« (Conservative heuristics to compute actions
that are NOT in ample(s):

S. A. Seshia

ample(s) cannot have actions that are visible or
dependent on other actions in enabled(s)

. If the same variable appears in two actions,

they are dependent

If two actions appear in the same
process/module, they are dependent

If an action shares a variable with a relevant
atomic proposition, then it is visible

22

Summary of P-O Reduction

* Very effective for asynchronous systems
* SPIN uses it by default

S. A. Seshia

23

State Compression Techniques

e Lossless

— Collapse compaction
» Essential a state encoding method

* Lossy

— Hash compaction
» Replace state vector by its hash; if you visit a state with same
hash as previously visited, then don’t explore further
— Bit-state hashing

» Think of the hash as a memory address of a single bit that
represents whether the state has/hasn’t been visited

» SPIN uses multiple (2) hashes per state
« 500 MB of memory can store 2 . 109 states with 2 hashes

— Are errors found this way still valid errors?

— Often even if a state is missed, its successors are

“reached
S. A. Seshia

24

