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Checking if M satisfies : Steps
1. Compute Buchi automaton B corresponding to 

~
2. Compute the Buchi automaton A 

corresponding to the system M
3. Compute the synchronous product P of A and 

B
• Product computation defines “accepting” states 

of P based on those of B
4. Check if some “accepting” state of P is visited 

infinitely often
• If so: we found a bug
• If not, no bug in M
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Example of Step 2

Kripke structure

Corresponding Buchi automaton
(transitions on labels not shown go 
to a non-accepting sink state “err”)

What’s different between 
the two? What’s the same?
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Step 1: Buchi Automaton from 
Kripke Structure

• Given: Kripke structure M = (S, S0, R, L)
– L : S  2AP, AP – set of atomic propositions

• Construct Buchi automaton                                  
A = (, S  {0, err}, , {0}, S  {0}) where:
– Alphabet,  = 2AP

– Set of states = S  {0, err} 
• 0 is a special start state, err is a (sink) error state

– All states are accepting except err
–  is transition relation of A such that:

• (s,  s’) iff R(s, s’) and  = L(s’) 
• (0,  s) iff s  S0 and  = L(s)

Need to also add transitions to dummy error state err for other symbols          
 not covered above
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Step 2: Compute synchronous 
product of A with B

• A and B are both Buchi automata with the 
same alphabet

• Synchronous product:
– A = (, S1, 1, {s0}, S1\{err})  (err is dummy error state)

– B = (, S2, 2, {s0’}, F’)
– Product P = (, S1 x S2, , {s0, s0’}, F)

• ((s1, s2), , (s1’, s2’)) = 1 (s1, , s1’)  2 (s2, , s2’) 
• (s1, s2)  F iff s1  err  s2  F’

[Note: we assume above that they share the same alphabet ]
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Example of Step 2

Property :  F q
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Step 3: Checking if some state is 
visited infinitely often

• Suppose I show you the graph 
corresponding to the product automaton

• What graph property corresponds to 
“visited infinitely often”?

p

~ p
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Step 3: Checking if some state is 
visited infinitely often

• Suppose I show you the graph 
corresponding to the product automaton

• What graph property corresponds to 
“visited infinitely often”?
– Checking for a cycle with an accepting state
– We also need to check that the accepting 

state is reachable from the initial state
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DFS + cycle detection

• How can we modify DFS to do cycle 
detection?
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DFS + cycle detection
• How can we modify DFS to do cycle 

detection?
– Find strongly connected components, and then 

check if there’s one with an accepting state    
[But: we don’t have the graph with us to start with]

– Use DFS to find an accepting state s
• On finding one, explore its child nodes.
• If a child node is on the stack, or if s has a self loop, 

we’re done
• Else, do a new DFS starting from s to see if you can 

reach it again

• SPIN’s “nested DFS” algorithm

[Why will this work? Any modifications to 
the basic DFS needed?]

[Easy to see why]
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Checking if M satisfies : Steps
1. Compute Buchi automaton B corresponding to 

~
2. Compute the Buchi automaton A corresponding 

to the system M
3. Compute the synchronous product P of A and B

• Product computation defines “accepting” states of 
P based on those of B

4. Check if some “accepting” state of P is visited 
infinitely often

• If so: we found a bug (What does a counterexample 
look like?)

• If not, no bug in M
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What if our property is not LTL?
• Let’s say the property is specified directly as a 

Buchi automaton B
• Then, to check if the system A satisfies the 

property, we use the same algorithm as before:
– Compute complement of B: call it B’
– Compute sync. product of A and B’
– Check for loops involving “accepting” states

• IMP: Buchi automata are closed under 
complementation, union, intersection

• Nondeterministic Buchi automata are strictly more 
expressive than deterministic Buchi automata!
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Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton
– NB – num of states in property automaton (for 

complement of the property we want to prove)
– NS – num of bits to represent each state
– NE – num transitions in product automaton
– Total size = N = (NA * NB * NS) + NE

• Checking G p properties w/ DFS 
– Time: ?   Space: ?

• Checking arbitrary (liveness) properties w/ nested 
DFS
– Time: ?   Space: ?



S. A. Seshia 14

Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton
– NB – num of states in property automaton (for 

complement of the property we want to prove)
– NS – num of bits to represent each state
– NE – num transitions in product automaton
– Total size = N = (NA * NB * NS) + NE

• Checking G p properties w/ DFS 
– Time: O(N*L)  [X] Space: O(N) {L – lookup time to 

check if state visited already}
• Checking arbitrary (liveness) properties w/ nested 

DFS
– Time: O(N*L)  [2X]   Space: O(N)
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Optimizations

• Complexity is a function of NE + NA * NB * NS

• Natural strategy to reduce time/space is to 
reduce:
– NE,NA  Partial-order reduction, Abstraction 

(later lecture) 
– NB  not really needed, NB is usually small
– NS  State compression techniques
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Partial Order Reduction
• Edges of automata correspond to “actions” 

taken by the automaton
– Assume that you label each edge with its 

corresponding action
• Idea: Some actions are independent of each 

other
– E.g. “internal actions” of systems composed 

asynchronously
– You can permute them without changing the 

end state reached
• Both interleavings yield same end state
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An Example

Initial state: x = y = g = 0
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Some Sample Properties: Are they 
preserved by P-O Reduction?

• F (g ¸ 2)

• G (x ¸ y)

Key point: The property matters in deciding 
dependencies!

Atomic propositions that appear in the temporal logic 
property are termed “relevant atomic propositions”
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Implementing P-O Reduction
• At each state s, some set of actions is enabled: 

enabled(s)
• Of this set, we want to explore only a subset 

ample(s) s.t. 
– We explore a subset of states and transitions
– The property holds for the reduced system iff it holds 

for the full system
• Pick an arbitrary element of ample(s) and 

execute that action
• QN: How to compute ample(s)?
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Independence and Invisibility
• Important properties of actions a, b: 

independence & invisibility
• Independence

– Enabledness: Action a should not disable b, and 
vice-versa

– Commutativity: a(b(s)) = b(a(s))
• Invisibility

– a and b should not affect the values of any 
‘relevant’ atomic propositions in the LTL property 
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Problem

• Computing ample(s) exactly is as hard as 
computing the reachable states of the 
system!
– One of the conditions defining ample(s): 

Along every path starting at s, an action a
dependent on action b in ample(s) cannot be 
executed before b

• See [Ch. 10, Clarke,Grumberg,Peled] for a 
proof
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Computing ample(s)
• Conservative heuristics to compute actions 

that are NOT in ample(s):
– ample(s) cannot have actions that are visible or 

dependent on other actions in enabled(s)
1. If the same variable appears in two actions, 

they are dependent
2. If two actions appear in the same 

process/module, they are dependent
3. If an action shares a variable with a relevant 

atomic proposition, then it is visible
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Summary of P-O Reduction

• Very effective for asynchronous systems
• SPIN uses it by default
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State Compression Techniques
• Lossless

– Collapse compaction
• Essential a state encoding method

• Lossy
– Hash compaction

• Replace state vector by its hash; if you visit a state with same 
hash as previously visited, then don’t explore further

– Bit-state hashing
• Think of the hash as a memory address of a single bit that 

represents whether the state has/hasn’t been visited
• SPIN uses multiple (2) hashes per state  
• 500 MB of memory can store 2 . 109 states with 2 hashes

– Are errors found this way still valid errors?
– Often even if a state is missed, its successors are 

reached


