
EECS 219C: Formal Methods

Explicit-State Model Checking:
Additional Material

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: G. Holzmann

S. A. Seshia 2

Checking if M satisfies : Steps
1. Compute Buchi automaton B corresponding to

~
2. Compute the Buchi automaton A

corresponding to the system M
3. Compute the synchronous product P of A and

B
• Product computation defines “accepting” states

of P based on those of B
4. Check if some “accepting” state of P is visited

infinitely often
• If so: we found a bug
• If not, no bug in M

S. A. Seshia 3

Example of Step 2

Kripke structure

Corresponding Buchi automaton
(transitions on labels not shown go
to a non-accepting sink state “err”)

What’s different between
the two? What’s the same?

S. A. Seshia 4

Step 1: Buchi Automaton from
Kripke Structure

• Given: Kripke structure M = (S, S0, R, L)
– L : S  2AP, AP – set of atomic propositions

• Construct Buchi automaton
A = (, S  {0, err}, , {0}, S  {0}) where:
– Alphabet,  = 2AP

– Set of states = S  {0, err}
• 0 is a special start state, err is a (sink) error state

– All states are accepting except err
–  is transition relation of A such that:

• (s,  s’) iff R(s, s’) and  = L(s’)
• (0,  s) iff s  S0 and  = L(s)

Need to also add transitions to dummy error state err for other symbols
 not covered above

S. A. Seshia 5

Step 2: Compute synchronous
product of A with B

• A and B are both Buchi automata with the
same alphabet

• Synchronous product:
– A = (, S1, 1, {s0}, S1\{err}) (err is dummy error state)

– B = (, S2, 2, {s0’}, F’)
– Product P = (, S1 x S2, , {s0, s0’}, F)

• ((s1, s2), , (s1’, s2’)) = 1 (s1, , s1’)  2 (s2, , s2’)
• (s1, s2)  F iff s1  err  s2  F’

[Note: we assume above that they share the same alphabet ]

S. A. Seshia 6

Example of Step 2

Property : F q

S. A. Seshia 7

Step 3: Checking if some state is
visited infinitely often

• Suppose I show you the graph
corresponding to the product automaton

• What graph property corresponds to
“visited infinitely often”?

p

~ p

S. A. Seshia 8

Step 3: Checking if some state is
visited infinitely often

• Suppose I show you the graph
corresponding to the product automaton

• What graph property corresponds to
“visited infinitely often”?
– Checking for a cycle with an accepting state
– We also need to check that the accepting

state is reachable from the initial state

S. A. Seshia 9

DFS + cycle detection

• How can we modify DFS to do cycle
detection?

S. A. Seshia 10

DFS + cycle detection
• How can we modify DFS to do cycle

detection?
– Find strongly connected components, and then

check if there’s one with an accepting state
[But: we don’t have the graph with us to start with]

– Use DFS to find an accepting state s
• On finding one, explore its child nodes.
• If a child node is on the stack, or if s has a self loop,

we’re done
• Else, do a new DFS starting from s to see if you can

reach it again

• SPIN’s “nested DFS” algorithm

[Why will this work? Any modifications to
the basic DFS needed?]

[Easy to see why]

S. A. Seshia 11

Checking if M satisfies : Steps
1. Compute Buchi automaton B corresponding to

~
2. Compute the Buchi automaton A corresponding

to the system M
3. Compute the synchronous product P of A and B

• Product computation defines “accepting” states of
P based on those of B

4. Check if some “accepting” state of P is visited
infinitely often

• If so: we found a bug (What does a counterexample
look like?)

• If not, no bug in M

S. A. Seshia 12

What if our property is not LTL?
• Let’s say the property is specified directly as a

Buchi automaton B
• Then, to check if the system A satisfies the

property, we use the same algorithm as before:
– Compute complement of B: call it B’
– Compute sync. product of A and B’
– Check for loops involving “accepting” states

• IMP: Buchi automata are closed under
complementation, union, intersection

• Nondeterministic Buchi automata are strictly more
expressive than deterministic Buchi automata!

S. A. Seshia 13

Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton
– NB – num of states in property automaton (for

complement of the property we want to prove)
– NS – num of bits to represent each state
– NE – num transitions in product automaton
– Total size = N = (NA * NB * NS) + NE

• Checking G p properties w/ DFS
– Time: ? Space: ?

• Checking arbitrary (liveness) properties w/ nested
DFS
– Time: ? Space: ?

S. A. Seshia 14

Time/Space Complexity
• Size measured in terms of:

– NA – num of states in system automaton
– NB – num of states in property automaton (for

complement of the property we want to prove)
– NS – num of bits to represent each state
– NE – num transitions in product automaton
– Total size = N = (NA * NB * NS) + NE

• Checking G p properties w/ DFS
– Time: O(N*L) [X] Space: O(N) {L – lookup time to

check if state visited already}
• Checking arbitrary (liveness) properties w/ nested

DFS
– Time: O(N*L) [2X] Space: O(N)

S. A. Seshia 15

Optimizations

• Complexity is a function of NE + NA * NB * NS

• Natural strategy to reduce time/space is to
reduce:
– NE,NA  Partial-order reduction, Abstraction

(later lecture)
– NB  not really needed, NB is usually small
– NS  State compression techniques

S. A. Seshia 16

Partial Order Reduction
• Edges of automata correspond to “actions”

taken by the automaton
– Assume that you label each edge with its

corresponding action
• Idea: Some actions are independent of each

other
– E.g. “internal actions” of systems composed

asynchronously
– You can permute them without changing the

end state reached
• Both interleavings yield same end state

S. A. Seshia 17

An Example

Initial state: x = y = g = 0

S. A. Seshia 18

Some Sample Properties: Are they
preserved by P-O Reduction?

• F (g ¸ 2)

• G (x ¸ y)

Key point: The property matters in deciding
dependencies!

Atomic propositions that appear in the temporal logic
property are termed “relevant atomic propositions”

S. A. Seshia 19

Implementing P-O Reduction
• At each state s, some set of actions is enabled:

enabled(s)
• Of this set, we want to explore only a subset

ample(s) s.t.
– We explore a subset of states and transitions
– The property holds for the reduced system iff it holds

for the full system
• Pick an arbitrary element of ample(s) and

execute that action
• QN: How to compute ample(s)?

S. A. Seshia 20

Independence and Invisibility
• Important properties of actions a, b:

independence & invisibility
• Independence

– Enabledness: Action a should not disable b, and
vice-versa

– Commutativity: a(b(s)) = b(a(s))
• Invisibility

– a and b should not affect the values of any
‘relevant’ atomic propositions in the LTL property

S. A. Seshia 21

Problem

• Computing ample(s) exactly is as hard as
computing the reachable states of the
system!
– One of the conditions defining ample(s):

Along every path starting at s, an action a
dependent on action b in ample(s) cannot be
executed before b

• See [Ch. 10, Clarke,Grumberg,Peled] for a
proof

S. A. Seshia 22

Computing ample(s)
• Conservative heuristics to compute actions

that are NOT in ample(s):
– ample(s) cannot have actions that are visible or

dependent on other actions in enabled(s)
1. If the same variable appears in two actions,

they are dependent
2. If two actions appear in the same

process/module, they are dependent
3. If an action shares a variable with a relevant

atomic proposition, then it is visible

S. A. Seshia 23

Summary of P-O Reduction

• Very effective for asynchronous systems
• SPIN uses it by default

S. A. Seshia 24

State Compression Techniques
• Lossless

– Collapse compaction
• Essential a state encoding method

• Lossy
– Hash compaction

• Replace state vector by its hash; if you visit a state with same
hash as previously visited, then don’t explore further

– Bit-state hashing
• Think of the hash as a memory address of a single bit that

represents whether the state has/hasn’t been visited
• SPIN uses multiple (2) hashes per state
• 500 MB of memory can store 2 . 109 states with 2 hashes

– Are errors found this way still valid errors?
– Often even if a state is missed, its successors are

reached

