
(

A Tutorial on Runtime Verification and
Assurance

Ankush Desai
EECS 219C

(

Background

Formal Verification (e.g., Model checking):
• Formal, sound, provides guarantees.

• Doesn’t scale well - state explosion problem.

• Checks a model, not an implementation.

• Most people avoid it – too much effort.

Testing (ad-hoc checking):
• Most widely used technique in the industry.

• Scales well, usually inexpensive.

• Test an implementation directly.

• Informal, doesn’t provide guarantees.

PROGRAMMING SAFE ROBOTICS SYSTEMS 2

(

Runtime Verification

Attempt to bridge the gap between formal methods
and ad-hoc testing.
• A program is monitored while it is running and checked

against properties of interest.

• Properties are specified in a formal notation (LTL, RegEx,
etc.).

• Dealing only with finite traces.

Considered as a light-weight formal method
technique.
• Testing with formal “flavour”.

• Still doesn’t provide full guarantees.

PROGRAMMING SAFE ROBOTICS SYSTEMS 3

(4

Runtime Verification, cont’d

How to monitor a program?
• Need to extract events from the program while it is running.

• code instrumentation.

Static phase

Dynamic phase

Program

Specifications Code

Instrumentation

Instrumented

Program

Runtime

Checker

Stream of events

(5

Main Challenge: Efficient monitoring

1. Low instrumentation + communication overhead.

2. An efficient monitor should have the following
properties:

• No backtracking.

• Memory-less: doesn’t store the trace.

• Space efficiency.

• Runtime efficiency.

• A monitor that runs in time exponential in the size of the trace is
unacceptable.

• A monitor that runs in time exponential in the size of the formula is
usable, but should be avoided.

(

Still, What is Runtime Verification?
There are three interpretations of what runtime verification is, in
contrast with formal verification discussed in this course.

1. RV as lightweight verification, non-exhaustive simulation (testing) plus
formal specifications

2. RV as getting closer to implementation, away from abstract models.

3. RV as checking systems after deployment while they are up and running.

PROGRAMMING SAFE ROBOTICS SYSTEMS 6

(

DRONA: A Framework for Programming Safe
Robotics Systems

Ankush Desai
University Of California, Berkeley

(

Autonomous Mobile Robotics

8

Warehouse

AgricultureDelivery Systems

Surveillance
A major challenge in autonomous mobile robotics is programming

robots with formal guarantees and high assurance of correct

operation.

(

Surveillance Application

9

Workspace in Gazebo Simulator Obstacle Map and Drone Trajectory

(

Robotics Software Stack

Challenges

• Safe programming of
concurrent, distributed,
reactive, event-driven system.

• Verification and testing of
robotics software in the
presence of untrusted blocks.

• Guaranteeing safety in the
presence of untrusted blocks.

CAV’15 10

Design-time: Programming

Design-time: Verification

Run-time: Assurance

(

Related Work

Design-time: Programming

• Programming abstractions for implementing robotics
applications: ROS, StarL, ..

• Reactive Synthesis.
1. Synthesis of high-level controllers (mission/motion

planners) from LTL specifications [LTLMoP, TuLiP].

2. Synthesis high and low-level controllers from LTL
specification [SMC].

11

Pros Cons

Correct-by-construction

controller or strategy.

Generates strategies but not executable code. (gap)

Uses under-approximate models during synthesis.

No end-to-end correctness guarantees.

(

Related Work

Design-time: Verification and Validation

• Reachability.
• Reachability analysis of the robotics system model (e.g.,

hybrid system) [Level Set Toolbox, SpaceEx, Flow*, Sapo]

• Synthesize safe controller as part of the reachability
analysis [FastTrack,..]

12

Pros Cons

Verification and proof of

correctness for the

model of the system.

Verifies models but not the executable code.

(gap)

Scalability issues as the dimensions and discrete

states increases.

No end-to-end correctness guarantees.

(

Related Work

Design-time: Verification and Validation

• Simulation-based Falsification.
• Testing the software implementation by simulating it in a

loop with high-fidelity models of the system [Breach, S-
Taliro].

13

Pros Cons

Easy to use and more scalable than

reachability analysis in terms of

complexity of the system and bug

finding.

No proofs, no guarantees.

Falsification on actual software

implementation!

Scalability issues in terms of

coverage for real-world

systems.

(

Our Contributions

1. A high-level programming language for
implementing reactive software:

• P Programming Language.

14

Plan Executor

Motion Planner

Surveillance Protocol

Application

Trusted Software Stack

(

Our Contributions

1. A high-level programming language for
implementing reactive software:

• P Programming Language.

2. Verification of the robotics software.

• Using discrete abstractions of the
untrusted components.

15

Controllers
State

Estimators

Plan Executor

Motion Planner Machine

Learning

Modules

Surveillance Protocol

Application

Trusted Software Stack

Robot SDK

(

Our Contributions

1. A high-level programming
language for implementing
reactive software:

• P Programming Language.

2. Verification of the robotics
software.

• Using discrete abstractions of
the robot behavior.

3. Use Runtime Assurance to ensure
that the assumptions hold.

16

Controllers
State

Estimators

Plan Executor

Motion Planner Machine

Learning

Modules

Surveillance Protocol

Application

Trusted Software Stack

Robot SDK

Online

Monitors

RV Module

(17

q1

q2

qg

𝜖

q0

What are these abstractions?

(

Verified Motion Planner

• Verify that the plans generated by the motion
planner are always 𝜖 distance away from all
obstacles.

• The planner is safe and provides the guarantee of
obstacle-avoidance under the assumption.

18

(

Validating Low-Level Controllers

19

(

Challenge 3: Guaranteeing Safety at Run time
when Design-time assumptions are violated

20

(

Robotics Software Stack
(1) Obstacle Avoidance (𝜙𝑜𝑏𝑠):

Stay a minimum distance
from obstacles.

(2) Battery Safety (𝜙𝑏𝑎𝑡): Land
safely when the battery is
low.

CAV’15 21

How to provide

safety

guarantees?

(

Simplex Architecture for Run-time Assurance

22

“The simplex architecture for safe on-line control system upgrades” [Lui Sha,

RTSS’98]

(

Runtime Assurance (RTA) Module

An RTA Module is a tuple 𝑀𝑎𝑐 , 𝑀𝑠𝑐 , 𝜙𝑠𝑎𝑓𝑒, 𝜙𝑠𝑎𝑓𝑒𝑟 , Δ

• 𝑀𝑎𝑐 is the Advanced Controller machine.

• 𝑀𝑠𝑐 is the Safe (certified) Controller machine.

• 𝜙𝑠𝑎𝑓𝑒 is the desired safety specification.

• 𝜙𝑠𝑎𝑓𝑒𝑟 is a stronger safety specification (𝜙𝑠𝑎𝑓𝑒𝑟 ⊆
𝜙𝑠𝑎𝑓𝑒).

• Δ is the sampling rate of the DM.

23

(

RTA-Protected Motion Primitive

24

(

A RTA machine is well-formed

An RTA Module 𝑀𝑎𝑐 , 𝑀𝑠𝑐 , 𝜙𝑠𝑎𝑓𝑒 , 𝜙𝑠𝑎𝑓𝑒𝑟 , Δ is well-
formed:

• Outputs of 𝑀𝑎𝑐 and 𝑀𝑠𝑐 are the same.

• 𝑀𝑎𝑐 and 𝑀𝑠𝑐 have same period (<= Δ).

• The 𝑀𝑠𝑐 satisfies the following properties:

1. 𝑅𝑒𝑎𝑐ℎ 𝜙𝑠𝑎𝑓𝑒, 𝑀𝑠𝑐 , ∗ ⊆ 𝜙𝑠𝑎𝑓𝑒 .

2. ∀𝑠 ∈ 𝜙𝑠𝑎𝑓𝑒 , ∃𝑠
′, 𝑇 𝑠. 𝑡. 𝑠′ ∈ 𝑅𝑒𝑎𝑐ℎ 𝑠,𝑀𝑠𝑐 , 𝑇

𝑎𝑛𝑑 𝑅𝑒𝑎𝑐ℎ 𝑠′, 𝑀𝑠𝑐 , Δ ⊆ 𝜙𝑠𝑎𝑓𝑒𝑟 .

3. 𝑅𝑒𝑎𝑐ℎ 𝜙𝑠𝑎𝑓𝑒𝑟 , ∗, 2Δ ⊆ 𝜙𝑠𝑎𝑓𝑒.

25

(26

Theorem: The following is an inductive invariant:

Mode = SC  s  safe



Mode = AC  Reach(s,*,)  safe

(

Declaring RTA Module

27

(

Compositional Runtime Assurance

28

(

RTA-Protected Robotics Mission

(

Safe Exploration

Darpa Demo in Collaboration with UPenn.

30

(

Rigorous Simulations

• Simulated the surveillance system for 104 hours.

• Total distance : ≈ 1500KM.

• Total disengagement (from AC to SC): 109.

• Total crashes : 34.

• Scheduling issues: 31.

31

(

Conclusion

Two challenges: (1) Reactivity (2) Untrusted
Components.

Solution: Combining design-time approaches like
programming languages and verification (software and
controller) with runtime assurance.

We can get the desired “end-to-end correctness”*

*under certain assumption 

32

(DRONA 33

