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Background

Formal Verification (e.g., Model checking):
• Formal, sound, provides guarantees.

• Doesn’t scale well - state explosion problem.

• Checks a model, not an implementation.

• Most people avoid it – too much effort.

Testing (ad-hoc checking):
• Most widely used technique in the industry.

• Scales well, usually inexpensive.

• Test an implementation directly.

• Informal, doesn’t provide guarantees.
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Runtime Verification

Attempt to bridge the gap between formal methods 
and ad-hoc testing.
• A program is monitored while it is running and checked 

against properties of interest.

• Properties are specified in a formal notation (LTL, RegEx, 
etc.).

• Dealing only with finite traces.

Considered as a light-weight formal method 
technique.
• Testing with formal “flavour”. 

• Still doesn’t provide full guarantees.
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Runtime Verification, cont’d

How to monitor a program?
• Need to extract events from the program while it is running.

• code instrumentation.
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Main Challenge: Efficient monitoring

1. Low instrumentation + communication overhead.

2. An efficient monitor should have the following 
properties:

• No backtracking.

• Memory-less: doesn’t store the trace.

• Space efficiency.

• Runtime efficiency.

• A monitor that runs in time exponential in the size of the trace is 
unacceptable.

• A monitor that runs in time exponential in the size of the formula is 
usable, but should be avoided.
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Still, What is Runtime Verification?
There are three interpretations of what runtime verification is, in 
contrast with formal verification discussed in this course.

1. RV as lightweight verification, non-exhaustive simulation (testing) plus 
formal specifications 

2. RV as getting closer to implementation, away from abstract models.

3. RV as checking systems after deployment while they are up and running.
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Autonomous Mobile Robotics
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Warehouse

AgricultureDelivery Systems

Surveillance
A major challenge in autonomous mobile robotics is programming 

robots with formal guarantees and high assurance of correct 

operation.
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Surveillance Application

9

Workspace in Gazebo Simulator Obstacle Map and Drone Trajectory
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Robotics Software Stack

Challenges

• Safe programming of 
concurrent, distributed, 
reactive, event-driven system.

• Verification and testing of 
robotics software in the 
presence of untrusted blocks.

• Guaranteeing safety in the 
presence of untrusted blocks.
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Design-time: Programming

Design-time: Verification

Run-time: Assurance
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Related Work

Design-time: Programming

• Programming abstractions for implementing robotics 
applications: ROS, StarL, ..

• Reactive Synthesis.
1. Synthesis of high-level controllers (mission/motion 

planners) from LTL specifications [LTLMoP, TuLiP].

2. Synthesis high and low-level controllers from LTL 
specification [SMC].
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Pros Cons

Correct-by-construction 

controller or strategy.

Generates strategies but not executable code. (gap)

Uses under-approximate models during synthesis.

No end-to-end correctness guarantees.
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Related Work

Design-time: Verification and Validation

• Reachability.
• Reachability analysis of the robotics system model (e.g., 

hybrid system) [Level Set Toolbox, SpaceEx, Flow*, Sapo]

• Synthesize safe controller as part of the reachability 
analysis [FastTrack,..]
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Pros Cons

Verification and proof of 

correctness for the 

model of the system.

Verifies models but not the executable code. 

(gap)

Scalability issues as the dimensions and discrete 

states increases.

No end-to-end correctness guarantees.
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Related Work

Design-time: Verification and Validation

• Simulation-based Falsification.
• Testing the software implementation by simulating it in a 

loop with high-fidelity models of the system [Breach, S-
Taliro].
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Pros Cons

Easy to use and more scalable than 

reachability analysis in terms of 

complexity of the system and bug 

finding.

No proofs, no guarantees.

Falsification on actual software 

implementation!

Scalability issues in terms of 

coverage for real-world 

systems.



(

Our Contributions

1. A high-level programming language for 
implementing reactive software:

• P Programming Language.
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Our Contributions

1. A high-level programming language for 
implementing reactive software:

• P Programming Language.

2. Verification of the robotics software.

• Using discrete abstractions of the 
untrusted components.
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Our Contributions

1. A high-level programming 
language for implementing 
reactive software:

• P Programming Language.

2. Verification of the robotics 
software.

• Using discrete abstractions of 
the robot behavior.

3. Use Runtime Assurance to ensure 
that the assumptions hold.
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q1

q2

qg

𝜖

q0

What are these abstractions?
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Verified Motion Planner

• Verify that the plans generated by the motion 
planner are always 𝜖 distance away from all 
obstacles.

• The planner is safe and provides the guarantee of 
obstacle-avoidance under the assumption.
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Validating Low-Level Controllers
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Challenge 3: Guaranteeing Safety at Run time 
when Design-time assumptions are violated
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Robotics Software Stack
(1) Obstacle Avoidance (𝜙𝑜𝑏𝑠 ): 

Stay a minimum distance 
from obstacles.

(2) Battery Safety (𝜙𝑏𝑎𝑡 ): Land 
safely when the battery is 
low.
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How to provide 

safety 

guarantees?
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Simplex Architecture for Run-time Assurance
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“The simplex architecture for safe on-line control system upgrades” [Lui Sha, 

RTSS’98]
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Runtime Assurance (RTA) Module

An RTA Module is a tuple 𝑀𝑎𝑐 , 𝑀𝑠𝑐 , 𝜙𝑠𝑎𝑓𝑒, 𝜙𝑠𝑎𝑓𝑒𝑟 , Δ

• 𝑀𝑎𝑐 is the Advanced Controller machine.

• 𝑀𝑠𝑐 is the Safe (certified) Controller machine.

• 𝜙𝑠𝑎𝑓𝑒 is the desired safety specification.

• 𝜙𝑠𝑎𝑓𝑒𝑟 is a stronger safety specification (𝜙𝑠𝑎𝑓𝑒𝑟 ⊆
𝜙𝑠𝑎𝑓𝑒).

• Δ is the sampling rate of the DM.
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RTA-Protected Motion Primitive
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A RTA machine is well-formed

An RTA Module 𝑀𝑎𝑐 , 𝑀𝑠𝑐 , 𝜙𝑠𝑎𝑓𝑒 , 𝜙𝑠𝑎𝑓𝑒𝑟 , Δ is well-
formed:

• Outputs of 𝑀𝑎𝑐 and 𝑀𝑠𝑐 are the same.

• 𝑀𝑎𝑐 and 𝑀𝑠𝑐 have same period (<= Δ).

• The 𝑀𝑠𝑐 satisfies the following properties:

1. 𝑅𝑒𝑎𝑐ℎ 𝜙𝑠𝑎𝑓𝑒, 𝑀𝑠𝑐 , ∗ ⊆ 𝜙𝑠𝑎𝑓𝑒 .

2. ∀𝑠 ∈ 𝜙𝑠𝑎𝑓𝑒 , ∃𝑠
′, 𝑇 𝑠. 𝑡. 𝑠′ ∈ 𝑅𝑒𝑎𝑐ℎ 𝑠,𝑀𝑠𝑐 , 𝑇

𝑎𝑛𝑑 𝑅𝑒𝑎𝑐ℎ 𝑠′, 𝑀𝑠𝑐 , Δ ⊆ 𝜙𝑠𝑎𝑓𝑒𝑟 .

3. 𝑅𝑒𝑎𝑐ℎ 𝜙𝑠𝑎𝑓𝑒𝑟 , ∗, 2Δ ⊆ 𝜙𝑠𝑎𝑓𝑒.
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Theorem: The following is an inductive invariant:         

Mode = SC  s  safe



Mode = AC  Reach(s,*,)  safe
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Declaring RTA Module
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Compositional Runtime Assurance
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RTA-Protected Robotics Mission
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Safe Exploration

Darpa Demo in Collaboration with UPenn.
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Rigorous Simulations

• Simulated the surveillance system for 104 hours.

• Total distance : ≈ 1500KM.

• Total disengagement (from AC to SC): 109.

• Total crashes : 34.

• Scheduling issues: 31.
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Conclusion

Two challenges: (1) Reactivity (2) Untrusted 
Components.

Solution: Combining design-time approaches like 
programming languages and verification (software and 
controller) with runtime assurance.

We can get the desired “end-to-end correctness”*

*under certain assumption 
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