
EECS 219C: Computer-Aided Verification

Symbolic Model Checking
Part I

Sanjit A. Seshia
EECS, UC Berkeley

S. A. Seshia 2

Today’s Lecture

Symbolic model checking with BDDs

Manipulate sets (of states and
transitions) rather than individual
elements and represent sets as
Boolean formulas

Represent Boolean
formulas as BDDs

S. A. Seshia 3

Today’s Lecture

• Symbolic model checking
– Basics of symbolic representation
– Quantified Boolean formulas (QBF)
– Checking G p
– Fixpoint theory
– Checking CTL properties

S. A. Seshia 4

Sets as Boolean functions

• Every finite set can be represented as a
Boolean function
– Suppose the set has N (> 0) elements
– Each element is encoded as a string of at

least � log M �bits, where M is the number of
elements in the universe

– Characteristic Boolean function is the one
whose ON-set (satisfying assignments) are
those strings

– Empty set is “False”

S. A. Seshia 5

Set Operations as
Boolean Operations

• A � B = ?

• A � B = ?

• A � B = ?

• Is A empty?

S. A. Seshia 6

Sets of states and transitions

• Set of states each state s is bit-string
comprising values of state variables

• Set of transitions
– Transition is a state pair (s, s’)
– View the pair as a combined bit-string

• From now, we will view the set of states S and
the transition relation R as Boolean formulas
over vector of current state variables v and next
state variables v’
– S(v), R(v, v’)

S. A. Seshia 7

Quantified Boolean Formulas

• Let F denote a Boolean formula, and v
denote one or more Boolean variables

• A quantified Boolean formula is obtained
as:

 ::= F | � v | � v | 	 |
 | �
• How do you express � vi and � vi in

terms of ’s cofactors and standard
Boolean operators?

S. A. Seshia 8

Symbolic Model Checking G p
• Given: Set of initial states S0, transition

relation R
• Check property G p (or AG p)
• How symbolic model checking will do this:

– Compute S0, S1, S2, … where Si is the set of
states reachable from some initial state in at
most i steps

• What kind of search is this: DFS or BFS?
• When do we stop?

– After computing each Si, check whether any
element of Si satisfies � p [How?]

• How do we generate a counterexample?

S. A. Seshia 9

Reachability Analysis

• The process of computing the set of states
reachable from some initial state in 0 or
more steps
– Often characterized as checking (AG true)
– The resulting set is called “reachable set” or

“set of reachable states”
• This is the “strongest invariant” of the system

WHY? What is a “system invariant”?

S. A. Seshia 10

Implementing Reachability Analysis

• How is Si related to Si+1?
– In words
– As a recurrence relation using QBF

S. A. Seshia 11

Implementing Reachability Analysis

• How is Si related to Si+1?
• v � Si+1 iff v � Si or there is a state x � Si

such that R(x, v)
• Si+1(v) = Si(v)
 � x { Si(x) 	 R(x,v) }

S. A. Seshia 12

Implementing Reachability Analysis

• How is Si related to Si+1?
• v � Si+1 iff v � Si or there is a state x � Si

such that R(x, v)
• Si+1(v) = Si(v)
 � x { Si(x) 	 R(x,v) }
• Si+1(v) = Si(v)
 (� v { Si(v) 	 R(v,v’) }) [v/v’]

– F[x/y] means that we substitute x for y in F

S. A. Seshia 13

Implementing Reachability Analysis

i := 0;
do {
i++;
Si(v) = Si-1(v)
 (� v { Si-1(v) 	 R(v,v’) }) [v/v’]

} while (Si(v) != Si-1(v))
Si(v) is the set of reachable states

S. A. Seshia 14

BDD Issues

• Remember that Si and R are represented
as BDDs

• How large they grow determines the space
and time usage of the algorithm

S. A. Seshia 15

Backwards Reachability
• Suppose we want to verify G p
• The formula � p characterizes all error

states
• We can search backwards for a path to an

error state from some initial state
– Compute E0, E1, E2, … as states reachable

from the error states in at most 0, 1, 2, … steps
– E0 = � p
– How to express Ei+1 in terms of Ei ?

• Why would we want to do backwards
reachability analysis? Is it always better?

S. A. Seshia 16

Verification of G p

• Corresponding CTL formula is AGp
• with Forward Reachability Analysis:

– Check if some Si 	 � p is true

• with Backward Reachability Analysis:
– Set E0 = � p
– Check if Ek 	 S0 is true for any k

S. A. Seshia 17

Symbolic Model Checking,
General Case

• We will consider properties in CTL
– As implemented in the original SMV model

checker
– Later we will see how LTL properties can be

verified using symbolic techniques

S. A. Seshia 18

Model Checking Arbitrary CTL
• Need only consider the following types of

CTL properties:
– E X p
– E G p
– E (p U q)

• Why? all others are expressible using
above
– A G p = ?
– A G (p (A F q)) = ?

S. A. Seshia 19

Fixpoint Theory

• Theory about elements/points that are
unchanged by application of a function
(hence “fixed point”)

• A concept from mathematics and
denotational semantics of programming
languages

• For this class: Theoretical concepts and
results that will help us design algorithms
for CTL model checking

S. A. Seshia 20

Fixpoint (Fixed point)

• Let be a set (the “universe”), and ’
– In model checking, = True

• Let : P() P()
– P() is the power set of

• Definition: ’ is a fixpoint of if (’) = ’

S. A. Seshia 21

Example of Fixpoint

• Let
– = {s0, s1}
– (Z) = Z � {s0}, Z

• What is a fixpoint of ? Is there only one?

S. A. Seshia 22

Model Checking Example

In the context of Reachability Analysis:
• What’s an example of a fixpoint we’ve

seen already? What was ?

’

S. A. Seshia 23

Model Checking Example

• What’s an example of a fixpoint we’ve
seen already? What was ?
– A G true can be computed using a fixpoint

formulation
– computes the “next state”

• What we need: a way to generalize this for
arbitrary CTL properties: EX, EG, EU
– Fixpoint theory helps us do this

S. A. Seshia 24

More Definitions

• is monotonic if for P Q, (P) (Q)
• is �-continuous if: P1 P2 P3 …
(� i Pi) = � i (Pi)

• is �-continuous if: P1 � P2 � P3 …
(� i Pi) = � i (Pi)

S. A. Seshia 25

Main Theorems (Tarski)
• is monotonic if for P Q, (P) (Q)
• is �-continuous if: P1 P2 P3 … (� i Pi) = � i (Pi)
• is �-continuous if: P1 � P2 � P3 … (� i Pi) = � i (Pi)

• A monotonic on P() always has
– a least fixpoint: written Z. (Z)
– a greatest fixpoint: written Z. (Z)
– least and greatest refer to the size of the

fixpoint Z.

S. A. Seshia 26

Least and Greatest Fixpoints

• Let
– = {s0, s1}
– (Z) = Z � {s0}, Z

• What is the least fixpoint of ? The
greatest fixpoint? Are they the same?

S. A. Seshia 27

Main Theorems (Tarski)
• is monotonic if for P Q, (P) (Q)
• is �-continuous if: P1 P2 P3 … (� i Pi) = � i (Pi)
• is �-continuous if: P1 � P2 � P3 … (� i Pi) = � i (Pi)

• A monotonic on P() always has
– a least fixpoint: written Z. (Z)
– a greatest fixpoint: written Z. (Z)
– Z. (Z) = ��{ Z | (Z) Z }
– Z. (Z) = ��{ Z | (Z) � Z }

S. A. Seshia 28

Main Theorems (Tarski)
• is monotonic if for P Q, (P) (Q)
• is �-continuous if: P1 P2 P3 … (� i Pi) = � i (Pi)
• is �-continuous if: P1 � P2 � P3 … (� i Pi) = � i (Pi)

• A monotonic on P() always has
– a least fixpoint: written Z. (Z)
– a greatest fixpoint: written Z. (Z)
– Z. (Z) = ��{ Z | (Z) Z }
– Z. (Z) = ��{ Z | (Z) � Z }
– Z. (Z) = � i i(�) when is �-continuous

– Z. (Z) = � i i() when is �-continuous

S. A. Seshia 29

Main Lemma for us

• If is finite and is monotonic, then is
also �-continuous and �-continuous

• Proof? (of �-continuous)
 is �-continuous if: P1 P2 P3 … (� i Pi) = � i (Pi)

S. A. Seshia 30

Next Steps

• We have the needed fixpoint theory
• Now all we need to do is formulate the

result of CTL operators as fixpoints
– We will identify a CTL formula with the set of

states that satisfy that formula
• Remember that CTL formulas start with A or E

which are interpreted over states, not runs

S. A. Seshia 31

CTL Results as Fixpoints

• A G p = Z. p 	 AX Z
– (Z) = p 	 AX Z
– Given a point (state) in Z, maps it to another

state that
• Satisfies p
• Can reach a state in Z along any execution path in

one step
• So what happens when we reach ’s fixpoint?

– Remember: fixpoint computation starts with
the universal set and works ‘downward’

S. A. Seshia 32

Other Fixpoint Formulations

• EF p = Z. p
 EX Z
• EG p = Z. p 	 EX Z
• E(p U q) = Z. q
 (p 	 EX Z)

• Intuitively:
– Eventualities least fixpoints
– Always/Forever greatest fixpoints

S. A. Seshia 33

Model Checking CTL Properties
• We define a general recursive procedure

called “Check” to do the fixpoint
computations

• Definition of Check:
– Input: A CTL property (and implicitly, R)
– Output: A Boolean formula B representing the

set of states satisfying

• If S0(v) B(v), then is true

S. A. Seshia 34

The “Check” procedure
Cases:
• If is a Boolean formula, then Check() =
• Else:

– = EX p, then Check() = CheckEX(Check(p))
– = E(p U q), then

Check() = CheckEU(Check(p), Check(q))
– = E G p, then Check() = CheckEG(Check(p))

• Note: What are the arguments to CheckEX,
CheckEU, CheckEG? CTL properties or Boolean
formulas?

S. A. Seshia 35

CheckEX

• CheckEX(p) returns a set of states such
that p is true in their next states

• How to write this?

� x [p(x) . R (s, x)]

S. A. Seshia 36

CheckEU
• CheckEU(p, q) returns a set of states, each of

which is such that
– Either q is true in that state
– Or p is true in that state and you can get from it to a

state in which p U q is true

S. A. Seshia 37

CheckEU
• CheckEU(p, q) returns a set of states, each of

which is such that
– Either q is true in that state
– Or p is true in that state and you can get from it to a state

in which p U q is true

• Let Z0 be our initial approximation to the answer to
CheckEU(p, q)

• Zk(v) = { q(v) + [p(v) . � v’ { R(v, v’) . Zk-1(v’) }] }

• What’s Z0? Why will this terminate?

S. A. Seshia 38

Summary
• EGp computed similarly

• Definition of Check:
– Input: A CTL property (and implicitly, R)
– Output: A Boolean formula B representing the

set of states satisfying

• All Boolean formulas represented
“symbolically” as BDDs
– “Symbolic Model Checking”

S. A. Seshia 39

Counterexample/Witness
Generation for CTL

• Counterexample = run showing how the
property is violated
– Formulas with universal path quantifier A

• Witness = run showing how the property is
satisfied
– Formulas with existential path quantifier E
– Can also view as counterexample for the

negated property
• E.g. E G p and A F � p

S. A. Seshia 40

Witness Generation for EG p
• Fixpoint formulation for E G p:

– Z . p 	 EX Z
– (Z) = p 	 EX Z

• Fixpoint computation yields sequence
Z0, Z1, …, Zk
– Z0 = True (universal set)
– Z1 = (True) = ?
– each Zi is a BDD representing a set of states
– How would you describe an element of Zi ?

• We need to generate the counterexample from
S0, R, Z0, Z1, …, Zk

S. A. Seshia 41

Witness Generation for EG p

• Fixpoint computation yields sequence
Z0, Z1, …, Zk
– A state in Zi (i > 0) satisfies p and there is a

path of length i-1 from that state comprising
states satisfying p

– How would you describe an element of Zk ?
• Remember: it’s the fixpoint

S. A. Seshia 42

Witness Generation for EG p

• Fixpoint computation yields sequence
Z0, Z1, …, Zk
– A state in Zi satisfies p and there is a path of

length i-1 from that state comprising states
satisfying p

– How would you describe an element of Zk ?
• State in Zk has path from it of length k-1 or more

(including a cycle) with all states satisfying p
• If S0 is contained in Zk, any initial state has such a

path

S. A. Seshia 43

Witness Generation for EG p

• Let s0 be an initial state with a desired
witness path
– We need to reproduce one such witness
– How can we do this?

S. A. Seshia 44

Witness Generation for EG p

• Let s0 be an initial state with a desired
witness path
– We need to reproduce one such witness
– How can we do this?

• Main insight: desired successor of s0 also satisfies
EG p, and so on

• Look for a cycle in such a computed chain
– Why should there be a cycle?

S. A. Seshia 45

Fairness
• A computation path is defined as fair if a

fairness constraint p is true infinitely often
along that path
– Fairness constraint is a state predicate
– Generalized to set of fairness constraints

{p1, p2, …, pk} by requiring each element of
the subset to be true infinitely often

• Example: Every process in an
asynchronous composition must be
scheduled infinitely often

