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Today’s Lecture

Symbolic model checking with BDDs

Manipulate sets (of states and 
transitions) rather than individual 
elements and represent sets as 
Boolean formulas

Represent Boolean 
formulas as BDDs
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Today’s Lecture

• Symbolic model checking
– Basics of symbolic representation
– Quantified Boolean formulas (QBF)
– Checking G p 
– Fixpoint theory
– Checking CTL properties
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Sets as Boolean functions

• Every finite set can be represented as a 
Boolean function
– Suppose the set has N (> 0) elements
– Each element is encoded as a string of at 

least � log M �bits, where M is the number of 
elements in the universe

– Characteristic Boolean function is the one 
whose ON-set (satisfying assignments) are 
those strings

– Empty set is “False”
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Set Operations as                
Boolean Operations

• A � B  = ?

• A � B = ?

• A � B = ?

• Is A empty?
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Sets of states and transitions

• Set of states  each state s is bit-string 
comprising values of state variables

• Set of transitions 
– Transition is a state pair (s, s’)
– View the pair as a combined bit-string

• From now, we will view the set of states S and 
the transition relation R as Boolean formulas 
over vector of current state variables v and next 
state variables v’
– S(v), R(v, v’)
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Quantified Boolean Formulas

• Let F denote a Boolean formula, and v 
denote one or more Boolean variables

• A quantified Boolean formula  is obtained 
as:

 ::=  F | � v  | � v  |  	  |  
  | � 
• How do you express � vi  and � vi  in 

terms of ’s cofactors and standard 
Boolean operators?
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Symbolic Model Checking G p
• Given: Set of initial states S0, transition 

relation R
• Check property G p  (or AG p)
• How symbolic model checking will do this:

– Compute S0, S1, S2, … where Si is the set of 
states reachable from some initial state in at 
most i steps

• What kind of search is this: DFS or BFS?
• When do we stop?

– After computing each Si, check whether any 
element of Si satisfies � p [ How? ]

• How do we generate a counterexample?
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Reachability Analysis

• The process of computing the set of states 
reachable from some initial state in 0 or 
more steps
– Often characterized as checking (AG true)
– The resulting set is called “reachable set” or 

“set of reachable states”
• This is the “strongest invariant” of the system 

WHY? What is a “system invariant”?
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Implementing Reachability Analysis

• How is Si related to Si+1?
– In words
– As a recurrence relation using QBF
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Implementing Reachability Analysis

• How is Si related to Si+1?
• v � Si+1 iff v � Si or there is a state x � Si

such that R(x, v) 
• Si+1(v) = Si(v) 
 � x { Si(x) 	 R(x,v) } 
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Implementing Reachability Analysis

• How is Si related to Si+1?
• v � Si+1 iff v � Si or there is a state x � Si

such that R(x, v) 
• Si+1(v) = Si(v) 
 � x { Si(x) 	 R(x,v) } 
• Si+1(v) = Si(v) 
 (� v { Si(v) 	 R(v,v’) }) [v/v’] 

– F[x/y] means that we substitute x for y in F
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Implementing Reachability Analysis

i := 0;
do {
i++;
Si(v) = Si-1(v) 
 (� v { Si-1(v) 	 R(v,v’) }) [v/v’] 

} while (Si(v) != Si-1(v))
Si(v) is the set of reachable states
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BDD Issues

• Remember that Si and R are represented 
as BDDs

• How large they grow determines the space 
and time usage of the algorithm
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Backwards Reachability
• Suppose we want to verify G p 
• The formula � p characterizes all error 

states
• We can search backwards for a path to an 

error state from some initial state
– Compute E0, E1, E2, … as states reachable 

from the error states in at most 0, 1, 2, … steps
– E0 = � p
– How to express Ei+1 in terms of Ei ?

• Why would we want to do backwards 
reachability analysis? Is it always better?
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Verification of G p

• Corresponding CTL formula is AGp
• with Forward Reachability Analysis:

– Check if some Si 	 � p  is true 

• with Backward Reachability Analysis:
– Set E0 = � p
– Check if Ek 	 S0 is true for any k 
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Symbolic Model Checking,   
General Case

• We will consider properties in CTL
– As implemented in the original SMV model 

checker
– Later we will see how LTL properties can be 

verified using symbolic techniques
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Model Checking Arbitrary CTL
• Need only consider the following types of 

CTL properties:
– E X p
– E G p
– E ( p U q )

• Why?  all others are expressible using 
above
– A G p = ?
– A G ( p  ( A F q ) ) = ?
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Fixpoint Theory

• Theory about elements/points that are 
unchanged by application of a function 
(hence “fixed point”)

• A concept from mathematics and 
denotational semantics of programming 
languages

• For this class: Theoretical concepts and 
results that will help us design algorithms 
for CTL model checking
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Fixpoint (Fixed point)

• Let  be a set (the “universe”), and ’  
– In model checking,  = True 

• Let  : P()  P() 
– P() is the power set of 

• Definition: ’ is a fixpoint of  if (’) = ’
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Example of Fixpoint

• Let 
–  = {s0, s1}
– (Z) = Z � {s0},   Z  

• What is a fixpoint of ? Is there only one?
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Model Checking Example

In the context of Reachability Analysis:
• What’s an example of a fixpoint we’ve 

seen already? What was ?

’
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Model Checking Example

• What’s an example of a fixpoint we’ve 
seen already? What was ?
– A G true can be computed using a fixpoint 

formulation
–  computes the “next state” 

• What we need: a way to generalize this for 
arbitrary CTL properties: EX, EG, EU
– Fixpoint theory helps us do this
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More Definitions

•  is monotonic if for P  Q, (P)  (Q)
•  is �-continuous if: P1  P2  P3 … 
(� i Pi) = � i (Pi) 

•  is �-continuous if: P1 � P2 � P3 … 
(� i Pi) = � i (Pi) 



S. A. Seshia 25

Main Theorems (Tarski)
•  is monotonic if for P  Q, (P)  (Q)
•  is �-continuous if: P1  P2  P3 …  (� i Pi) = � i (Pi) 
•  is �-continuous if: P1 � P2 � P3 …  (� i Pi) = � i (Pi) 

• A monotonic  on P() always has 
– a least fixpoint: written  Z. (Z) 
– a greatest fixpoint: written  Z. (Z) 
– least and greatest refer to the size of the 

fixpoint Z.
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Least and Greatest Fixpoints

• Let 
–  = {s0, s1}
– (Z) = Z � {s0},  Z  

• What is the least fixpoint of ? The 
greatest fixpoint? Are they the same?
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Main Theorems (Tarski)
•  is monotonic if for P  Q, (P)  (Q)
•  is �-continuous if: P1  P2  P3 …  (� i Pi) = � i (Pi) 
•  is �-continuous if: P1 � P2 � P3 …  (� i Pi) = � i (Pi) 

• A monotonic  on P() always has 
– a least fixpoint: written  Z. (Z) 
– a greatest fixpoint: written  Z. (Z) 
–  Z. (Z) = ��{ Z | (Z)  Z } 
–  Z. (Z) = ��{ Z | (Z) � Z }
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Main Theorems (Tarski)
•  is monotonic if for P  Q, (P)  (Q)
•  is �-continuous if: P1  P2  P3 …  (� i Pi) = � i (Pi) 
•  is �-continuous if: P1 � P2 � P3 …  (� i Pi) = � i (Pi) 

• A monotonic  on P() always has 
– a least fixpoint: written  Z. (Z) 
– a greatest fixpoint: written  Z. (Z) 
–  Z. (Z) = ��{ Z | (Z)  Z } 
–  Z. (Z) = ��{ Z | (Z) � Z }
–  Z. (Z) = � i i(�) when  is �-continuous

–  Z. (Z) = � i i() when  is �-continuous
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Main Lemma for us

• If  is finite and  is monotonic, then  is 
also �-continuous and �-continuous

• Proof? (of �-continuous)
 is �-continuous if: P1  P2  P3 …  (� i Pi) = � i (Pi) 
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Next Steps

• We have the needed fixpoint theory
• Now all we need to do is formulate the 

result of CTL operators as fixpoints
– We will identify a CTL formula with the set of 

states that satisfy that formula
• Remember that CTL formulas start with A or E 

which are interpreted over states, not runs
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CTL Results as Fixpoints

• A G p =  Z. p 	 AX Z
– (Z) = p 	 AX Z
– Given a point (state) in Z,  maps it to another 

state that
• Satisfies p
• Can reach a state in Z along any execution path in 

one step
• So what happens when we reach ’s fixpoint?

– Remember:  fixpoint computation starts with 
the universal set  and works ‘downward’
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Other Fixpoint Formulations

• EF p =  Z. p 
 EX Z
• EG p =  Z. p 	 EX Z 
• E(p U q) =  Z. q 
 (p 	 EX Z) 

• Intuitively:
– Eventualities  least fixpoints
– Always/Forever  greatest fixpoints
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Model Checking CTL Properties
• We define a general recursive procedure 

called “Check” to do the fixpoint 
computations

• Definition of Check:
– Input: A CTL property  (and implicitly, R)
– Output: A Boolean formula B representing the 

set of states satisfying 

• If  S0(v)  B(v), then  is true
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The “Check” procedure
Cases:
• If  is a Boolean formula, then Check() = 
• Else:

–  = EX p, then Check() = CheckEX(Check(p))
–  = E(p U q), then

Check() = CheckEU(Check(p), Check(q))
–  = E G p, then Check() = CheckEG(Check(p))

• Note: What are the arguments to CheckEX, 
CheckEU, CheckEG? CTL properties or Boolean 
formulas?
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CheckEX

• CheckEX(p) returns a set of states such 
that p is true in their next states

• How to write this? 

� x [ p(x) . R (s, x) ]
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CheckEU
• CheckEU(p, q) returns a set of states, each of 

which is such that
– Either q is true in that state
– Or p is true in that state and you can get from it to a 

state in which p U q is true
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CheckEU
• CheckEU(p, q) returns a set of states, each of 

which is such that
– Either q is true in that state
– Or p is true in that state and you can get from it to a state 

in which p U q is true

• Let Z0 be our initial approximation to the answer to 
CheckEU(p, q)

• Zk(v) = { q(v)  + [ p(v) .  � v’ { R(v, v’) . Zk-1(v’) }  ] }

• What’s Z0? Why will this terminate?
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Summary
• EGp computed similarly

• Definition of Check:
– Input: A CTL property  (and implicitly, R)
– Output: A Boolean formula B representing the 

set of states satisfying 

• All Boolean formulas represented 
“symbolically” as BDDs
– “Symbolic Model Checking”
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Counterexample/Witness 
Generation for CTL

• Counterexample = run showing how the 
property is violated
– Formulas with universal path quantifier A

• Witness = run showing how the property is 
satisfied
– Formulas with existential path quantifier E
– Can also view as counterexample for the 

negated property
• E.g. E G p and A F � p
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Witness Generation for EG p
• Fixpoint formulation for E G p:

–  Z . p 	 EX Z  
– (Z) = p 	 EX Z

• Fixpoint computation yields sequence               
Z0, Z1, …, Zk
– Z0 = True (universal set)
– Z1 = (True) = ?
– each Zi is a BDD representing a set of states
– How would you describe an element of Zi ?

• We need to generate the counterexample from 
S0, R, Z0, Z1, …, Zk
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Witness Generation for EG p

• Fixpoint computation yields sequence    
Z0, Z1, …, Zk
– A state in Zi (i > 0) satisfies p and there is a 

path of length i-1 from that state comprising 
states satisfying p 

– How would you describe an element of Zk ?
• Remember: it’s the fixpoint
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Witness Generation for EG p

• Fixpoint computation yields sequence    
Z0, Z1, …, Zk
– A state in Zi satisfies p and there is a path of 

length i-1 from that state comprising states 
satisfying p 

– How would you describe an element of Zk ?
• State in Zk has path from it of length k-1 or more 

(including a cycle) with all states satisfying p 
• If S0 is contained in Zk, any initial state has such a 

path
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Witness Generation for EG p

• Let s0 be an initial state with a desired 
witness path
– We need to reproduce one such witness
– How can we do this?
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Witness Generation for EG p

• Let s0 be an initial state with a desired 
witness path
– We need to reproduce one such witness
– How can we do this?

• Main insight: desired successor of s0 also satisfies 
EG p, and so on 

• Look for a cycle in such a computed chain
– Why should there be a cycle?
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Fairness
• A computation path is defined as fair if a 

fairness constraint p is true infinitely often 
along that path
– Fairness constraint is a state predicate
– Generalized to set of fairness constraints    

{p1, p2, …, pk} by requiring each element of 
the subset to be true infinitely often

• Example: Every process in an 
asynchronous composition must be 
scheduled infinitely often


