
Interpolation: Theory and
Applications

Vijay D’Silva
Google Inc., San Francisco

UC Berkeley 2016

Wednesday, March 30, 16

1 A Brief History of Interpolation

2 Verification with Interpolants

3 Interpolant Construction

4 Further Reading and Research

Wednesday, March 30, 16

Craig Interpolants

For two formulae A and B such that A implies

B, a Craig interpolant is a formula I such that

1. A implies I, and

2. I implies B, and

3. the non-logical symbols in I occur in A
and in B.

A

I

B

P ^ (P =) Q) =) Q =) R =) Q

Wednesday, March 30, 16

Reverse Interpolants or “Interpolants”

A

I

B

Note: In classical logic, A =) B is valid exactly

if A ^ ¬B is a contradiction.

For a contradiction A^B, a reverse interpolant is

a formula I such that

1. A implies I, and

2. I ^B is a contradiction, and

3. the non-logical symbols in I occur in A and

in B.

In the verification literature, “interpolant”

usually means “reverse interpolant.”

Wednesday, March 30, 16

International Business Machines Corporation

2050 Rt 52
Hopewell Junction, NY 12533

845-892-5262

 October 7, 2008

Dear Andreas,

I would like to congratulate Cadence Research Labs on their 15th Anniversary. In these 15 years, Cadence
Research Labs has worked at several frontiers of Electronic Design Automation. They focus on hard
problems that when solved significantly push the state of the art forward. They found novel solutions to
system, synthesis and formal verification problems.

Formal verification is the process of exhaustively validating that a logic entity behaves correctly. In
contrast to testing-based approaches, which may expose flaws though generally cannot yield a proof of
correctness, the exhaustiveness of formal verification ensures that no flaw will be left unexposed. Formal
verification is thus a critical technology in many domains, being essential to safety-critical applications and
to enable increased quality and reduced development costs of hardware and software systems. The benefits
of formal verification come at a substantial "cost": its exhaustiveness implies that it generally requires
computational resources which grow exponentially with respect to the size of the entity being analyzed.
Cadence Research Labs has had a fundamental role in the research and development of leading-edge formal
verification technologies, which have been critical to increasing the scalability and applicability of formal
verification techniques to an industrially relevant level.

CRL made important contributions in satisfiability checking technologies and model checking algorithms.
Satisfiability checking is arguably one of the most fundamental algorithms in computer-aided design, with
pervasive application domains including verification. Members of Cadence Research labs are world-
recognized experts in the field of high-performance satisfiability solvers, and collectively have developed a
set of solvers including MiniSAT, BerkMin, and Forklift which have won numerous competitions, been
downloaded and used in thousands of applications, and have integrated novel tricks and ideas which have
become the basis of countless other solvers.

Model checking algorithms are widely used for verifying hardware and software models. CRL has
pioneered numerous fundamental ideas and algorithms to this field, including "interpolation" as a
satisfiability-based proof method which is often dramatically faster and more scalable than prior proof
techniques. CBL researchers invented numerous novel methods to automatically reduce the domain of a
verification problem through "abstracting" it based upon unsatisfiability proofs. These techniques have
substantially increased the scalability of formal verification of complex hardware designs.

CRL researchers have not only used logic optimizations to speed up formal verification algorithms, but are
now also applying them to sequential optimization. Sequential synthesis has long been a holy grail in logic
optimization. A large part of the design space remains untapped unless one can reliably and effectively
optimize and verify in the sequential domain. Recent progress from CRL shows that there is some promise
we can tap into this some time in the not too distant future.

Leon

Leon Stok
Director,
Electronic Design Automation
IBM Corporation

International Business Machines Corporation

2050 Rt 52
Hopewell Junction, NY 12533

845-892-5262

 October 7, 2008

Dear Andreas,

I would like to congratulate Cadence Research Labs on their 15th Anniversary. In these 15 years, Cadence
Research Labs has worked at several frontiers of Electronic Design Automation. They focus on hard
problems that when solved significantly push the state of the art forward. They found novel solutions to
system, synthesis and formal verification problems.

Formal verification is the process of exhaustively validating that a logic entity behaves correctly. In
contrast to testing-based approaches, which may expose flaws though generally cannot yield a proof of
correctness, the exhaustiveness of formal verification ensures that no flaw will be left unexposed. Formal
verification is thus a critical technology in many domains, being essential to safety-critical applications and
to enable increased quality and reduced development costs of hardware and software systems. The benefits
of formal verification come at a substantial "cost": its exhaustiveness implies that it generally requires
computational resources which grow exponentially with respect to the size of the entity being analyzed.
Cadence Research Labs has had a fundamental role in the research and development of leading-edge formal
verification technologies, which have been critical to increasing the scalability and applicability of formal
verification techniques to an industrially relevant level.

CRL made important contributions in satisfiability checking technologies and model checking algorithms.
Satisfiability checking is arguably one of the most fundamental algorithms in computer-aided design, with
pervasive application domains including verification. Members of Cadence Research labs are world-
recognized experts in the field of high-performance satisfiability solvers, and collectively have developed a
set of solvers including MiniSAT, BerkMin, and Forklift which have won numerous competitions, been
downloaded and used in thousands of applications, and have integrated novel tricks and ideas which have
become the basis of countless other solvers.

Model checking algorithms are widely used for verifying hardware and software models. CRL has
pioneered numerous fundamental ideas and algorithms to this field, including "interpolation" as a
satisfiability-based proof method which is often dramatically faster and more scalable than prior proof
techniques. CBL researchers invented numerous novel methods to automatically reduce the domain of a
verification problem through "abstracting" it based upon unsatisfiability proofs. These techniques have
substantially increased the scalability of formal verification of complex hardware designs.

CRL researchers have not only used logic optimizations to speed up formal verification algorithms, but are
now also applying them to sequential optimization. Sequential synthesis has long been a holy grail in logic
optimization. A large part of the design space remains untapped unless one can reliably and effectively
optimize and verify in the sequential domain. Recent progress from CRL shows that there is some promise
we can tap into this some time in the not too distant future.

Leon

Leon Stok
Director,
Electronic Design Automation
IBM Corporation

Wednesday, March 30, 16

1 A Brief History of Interpolation

2 Verification with Interpolants

3 Interpolant Construction

4 Further Reading and Research

Wednesday, March 30, 16

Craig’s Interpolation Lemma (1957)

William Craig in 1988
http://sophos.berkeley.edu/interpolations/

Wednesday, March 30, 16

http://sophos.berkeley.edu/interpolations/
http://sophos.berkeley.edu/interpolations/

William Craig in 1988
http://sophos.berkeley.edu/interpolations/

Lemma. First-order logic has the interpolation

property. That is, if A =) B is valid, then a

Craig interpolant exists.

Craig’s Interpolation Lemma (1957)

Wednesday, March 30, 16

http://sophos.berkeley.edu/interpolations/
http://sophos.berkeley.edu/interpolations/

A High-Level View of the Proof

“The intuitive idea for Craig’s proof of the Interpolation Theorem
rests on the completeness theorem for FOL, in the form of the
equivalence of validity with provability in a suitable system of
axioms and rules of inference. By “suitable” here is meant one in
which there is a notion of a direct proof for which if Phi implies Psi
is provable then there is a direct proof of Psi from Phi. One would
expect that in such a proof, the relation symbols of Phi that are in
Psi would not disappear in the middle. Such systems were devised
by Herbrand (1930) and Gentzen (1934); Hilbert-style systems
enlarged by the axioms and rules of the epsilon-calculus can also
serve this purpose.

Feferman, Harmonious Logic: Craig’s Interpolation Theorem and Its Descendants, 2008

Wednesday, March 30, 16

Another Perspective on the Interpolation Theorem

“Important results have many things to say. At first sight, the
Interpolation Theorem of Craig (1957) seems a rather technical result for
connoisseurs inside logical meta-theory. But over the past decades, its
broader importance has become clear from many angles. In this paper, I
discuss my own current favourite views of interpolation: no attempt is
made at being fair or representative. First, I discuss the entanglement
of inference and vocabulary that is crucial to interpolation. Next, I
move to the role of interpolants in facilitating generalized inference
across different models. Then I raise the perhaps surprising issue of
‘what is the right formulation of Craig’s Theorem?’, high-lighting the
existence of non-trivial options in formulating meta-theorems.

 ...
 Finally, I discuss the ‘end of history’. Craig’s Theorem is about the last
significant property of first-order logic that has come to light. Is there
something deeper going on here, and if so, can we prove it?”

 -- Johan van Benthem, The Many Faces of Interpolation, 2008

Wednesday, March 30, 16

Interpolation In Mathematical Logic

1957 1960 1970 1980 1990 2000 2010

• Simpler proofs of known properties: Beth definability, Robinson’s theorem.
• Interpolant structure: Lyndon Interpolation theorems (1959).
• Preservation under homomorphisms (connections to finite-model theory).

• Many-sorted and Infinitary logics: Feferman ’68, ’74, Lopez-Escobar ’65,
Barwise ’69, Stern ’75, Otto ’00.

• Model theoretic characterizations: Makowsky ’85 for a survey.
• Amalgamation and algebraic characterization

• Guarded fragment: Hoogland, Marx, Otto ’00
• Modal and fixed point logics: Ten Cate ’05,
• Uniform interpolation: Pitt ’92, Visser ’96, d’Agostino, Hollenberg ’00

Wednesday, March 30, 16

Interpolation In Complexity and Proof Theory

1957 1960 1970 1980 1990 2000 2010

1971 1971, Cook. The Complexity of Theorem Proving Procedures

Proof Content. For any lan-

guage A 2 NP and n 2 N, one

can construct in polynomial time

a formula

Fn(x1, . . . , xn, y1, . . . , yp(n))

in propositional logic such that

for all x 2 {0, 1}n

x 2 A () 9y.Fn(x, y) = true

Wednesday, March 30, 16

Interpolation and Complexity Theory

1957 1960 1970 1980 1990 2000 2010

1971 1971, Cook. The Complexity of Theorem Proving Procedures

1982 Mundici, NP and Craig’s Interpolation Theorem (pub. 1984)

1983 Mundici, A Lower bound for the complexity of Craig’s Interpolants in Sentential Logic

Theorem. (Mundici, 1982) At least one of the following is true.

1. P = NP.

2. NP 6= coNP.

3. For F and G in propositional logic, such that F =) G, an

interpolant is not computable in time polynomial in the size

of F and G.

Wednesday, March 30, 16

1957 1960 1970 1980 1990 2000 2010

1997

Jan Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic.

1997

Pudlák, Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations

Interpolation and (Proof) Complexity Theory

A proof system ` has feasible interpolation if, whenever there is a short

refutation of A ^ B, the interpolant is computable in polynomial time in

the size of the proof.

Lemma If there is a resolution refutation of size n for a formula A ^ B,

there is an interpolant of circuit size 3n that is computable in time n.

Wednesday, March 30, 16

1957 1960 1970 1980 1990 2000 2010

1997 Carbone, Interpolants, Cut Elimination and Flow Graphs for the Propositional Calculus

Interpolation and (Proof) Complexity Theory

260 A. Carbonel Annals of Pure and Applied Logic 83 (1997) 24%299

It is easy to see that it describes the inner proof

D+D
D--+CvD

where we will refer to D --f C V D as inner sequent of A V D + A, C V D.
On the other hand, not all subgraphs of II induce a proof. For instance, consider

the subgraph

A*VE9D+D D,AvE -+A,D

D,dvE/+A!CvD

Notice that a given proof may contain more than one inner proof. Consider the
following very simple proof:

B+B C-+C
A-+A BvC+B,C

A,B v C + B,A A C

and the two logical flows for it

By*7

A-+A 4=sT/!Y
A,BvC + B,A AC

describing respectively the inner proofs

A+A c+c
A,C-+AAC

and
BAB C+C

BVC+C,B ’

The idea of inner proof is a basic intuition for both the proof of the Craig Inter-
polation Theorem and the result on the Cut Elimination Theorem we want to present.
Given a proof of A -+ B we will ‘extract’ from its
C (C -+ B) by keeping the logical paths linked to
only linked to B (A). Second, we show that if we
forgetting paths properly) a proof from the cut-free
sequent, then we can ‘extract’ a proof directly
sequent.

cut-free form a proof of A +
A (B) and forgetting the ones
can ‘extract’ (by keeping and
form of l7 of a certain inner
from II of the same inner

Combinatorial description of how information

flows in a proof. Interpolants eliminate certain

flows and preserve others. The “relevant” in-

formation is preserved.

Wednesday, March 30, 16

Interpolants in Automated Reasoning

1995 Huang, Constructing Craig Interpolation Formulas. (OTTER)

2001 Amir, McIlraith, Partition-Based Logical Reasoning.

2003 McMillan, Interpolation and SAT-Based Model Checking.

2004 Henziger, Jhala,Majumdar,McMillan, Abstractions from Proofs

2005 McMillan, An Interpolating Theorem Prover

1957 1960 1970 1980 1990 2000 2010

Wednesday, March 30, 16

1 A Brief History of Interpolation

2 Verification with Interpolants

3 Interpolant Construction

4 Further Reading and Research

Wednesday, March 30, 16

Systems Analysis with SAT/SMT Solvers

• Bounded Model Checking and
Symbolic Execution generate
formulae encoding bounded
executions.

• Can we generate invariants?

• Can we explore deeper executions
without running out of memory?

• Can we avoid exploring redundant
system behaviours?

System Property

Constraint
Generation

Solver

Formula

UNSAT SAT
Satisfying

Assignment

Wednesday, March 30, 16

A Simple Binary Counter

a2a1a0

a2a1a0

a2a1a0

¿

¡

¬

J(a)
def
= (a2 ^ a1 ^ a0)

T (a, a0)
def
= (a2 ^ a1) a0

2 ^ a0
1) ^ ¿

(a2 ^ a1) a0
2 ^ a0

1) ^ ¡

(a2 ^ a1) a0
2 ^ a0

1) ^ ¬

(a2 ^ a1) a0
2 ^ a0

1) ^ √

(a0
2 ^ a0

1 _ a0
2 ^ a0

1 _ a0
2 ^ a0

1)) a0
0

F (a)
def
= a0 ^ (a1 _ a2)

Fig. 2. A transition system implementing a binary counter.

a2a1a01 [a01] a1 [?] a2 [?] a2a1a
0
2 [a02]

a02a
0
1a

0
0 [a02 _ a01 _ a00]

a00 [>]

a2a01 [a01] a1a
0
2 [a02]

a01 [a01]

a02 [a02]

a01a
0
0 [a02 ^ a01 _ a02 ^ a00]

a00 [a02 ^ a01 ^ a00]

⇤ [a02 ^ a01 ^ a00]

J(a) = a2 ^ a1

T (a, a0) = (a2 _ a1 _ a0
1)^

(a2 _ a1 _ a0
2)^

(a0
2 _ a0

1 _ a0
0)

F (a0) = a0
0

Fig. 3. Refutation with McMillan’s interpolant of J(a)^T (a, a0) and F (a0). The figure
shows a contradictory subset of the clauses of a CNF encoding of the formulae.

4.1 Labelling Functions and Interpolation

Definition 5 (Labelling Function). Let (S,v,u,t) be the lattice below, where
S = {?, a, b, ab} is a set of symbols and v, u and t are defined by the Hasse
diagram. A labelling function L

R

: V

R

⇥ Lit! S for a refutation R over a set
of literals Lit satisfies that for all v 2 V

R

and t 2 Lit:

1. L

R

(v, t) = ? i↵ t /2 `

R

(v)
2. L

R

(v, t) = L

R

(v+
, t) t L

R

(v�, t) for an internal vertex
v and literal t 2 `

R

(v). ?

a b

ab

Due to condition (2) above, the labelling function for literals at internal vertices
is completely determined by the labels of literals at initial vertices. A variable x

is A-local in a pair (A, B) if x 2 Var(A)\Var(B), B-local if x 2 Var(B)\Var(A),
local if it is either of these, and shared otherwise.

a2a1a0

a2a1a0

a2a1a0

¿

¡

¬

J(a)
def
= (a2 ^ a1 ^ a0)

T (a, a0)
def
= (a2 ^ a1) a0

2 ^ a0
1) ^ ¿

(a2 ^ a1) a0
2 ^ a0

1) ^ ¡

(a2 ^ a1) a0
2 ^ a0

1) ^ ¬

(a2 ^ a1) a0
2 ^ a0

1) ^ √

(a0
2 ^ a0

1 _ a0
2 ^ a0

1 _ a0
2 ^ a0

1)) a0
0

F (a)
def
= a0 ^ (a1 _ a2)

Fig. 2. A transition system implementing a binary counter.

a2a1a01 [a01] a1 [?] a2 [?] a2a1a
0
2 [a02]

a02a
0
1a

0
0 [a02 _ a01 _ a00]

a00 [>]

a2a01 [a01] a1a
0
2 [a02]

a01 [a01]

a02 [a02]

a01a
0
0 [a02 ^ a01 _ a02 ^ a00]

a00 [a02 ^ a01 ^ a00]

⇤ [a02 ^ a01 ^ a00]

J(a) = a2 ^ a1

T (a, a0) = (a2 _ a1 _ a0
1)^

(a2 _ a1 _ a0
2)^

(a0
2 _ a0

1 _ a0
0)

F (a0) = a0
0

Fig. 3. Refutation with McMillan’s interpolant of J(a)^T (a, a0) and F (a0). The figure
shows a contradictory subset of the clauses of a CNF encoding of the formulae.

4.1 Labelling Functions and Interpolation

Definition 5 (Labelling Function). Let (S,v,u,t) be the lattice below, where
S = {?, a, b, ab} is a set of symbols and v, u and t are defined by the Hasse
diagram. A labelling function L

R

: V

R

⇥ Lit! S for a refutation R over a set
of literals Lit satisfies that for all v 2 V

R

and t 2 Lit:

1. L

R

(v, t) = ? i↵ t /2 `

R

(v)
2. L

R

(v, t) = L

R

(v+
, t) t L

R

(v�, t) for an internal vertex
v and literal t 2 `

R

(v). ?

a b

ab

Due to condition (2) above, the labelling function for literals at internal vertices
is completely determined by the labels of literals at initial vertices. A variable x

is A-local in a pair (A, B) if x 2 Var(A)\Var(B), B-local if x 2 Var(B)\Var(A),
local if it is either of these, and shared otherwise.

Initial State

Transition
Relation

Reachability Condition

Wednesday, March 30, 16

A Refutation and Its Interpolant

a2a1a0

a2a1a0

a2a1a0

¿

¡

¬

J(a)
def
= (a2 ^ a1 ^ a0)

T (a, a0)
def
= (a2 ^ a1) a0

2 ^ a0
1) ^ ¿

(a2 ^ a1) a0
2 ^ a0

1) ^ ¡

(a2 ^ a1) a0
2 ^ a0

1) ^ ¬

(a2 ^ a1) a0
2 ^ a0

1) ^ √

(a0
2 ^ a0

1 _ a0
2 ^ a0

1 _ a0
2 ^ a0

1)) a0
0

F (a)
def
= a0 ^ (a1 _ a2)

Fig. 2. A transition system implementing a binary counter.

a2a1a01 [a01] a1 [?] a2 [?] a2a1a
0
2 [a02]

a02a
0
1a

0
0 [a02 _ a01 _ a00]

a00 [>]

a2a01 [a01] a1a
0
2 [a02]

a01 [a01]

a02 [a02]

a01a
0
0 [a02 ^ a01 _ a02 ^ a00]

a00 [a02 ^ a01 ^ a00]

⇤ [a02 ^ a01 ^ a00]

J(a) = a2 ^ a1

T (a, a0) = (a2 _ a1 _ a0
1)^

(a2 _ a1 _ a0
2)^

(a0
2 _ a0

1 _ a0
0)

F (a0) = a0
0

Fig. 3. Refutation with McMillan’s interpolant of J(a)^T (a, a0) and F (a0). The figure
shows a contradictory subset of the clauses of a CNF encoding of the formulae.

4.1 Labelling Functions and Interpolation

Definition 5 (Labelling Function). Let (S,v,u,t) be the lattice below, where
S = {?, a, b, ab} is a set of symbols and v, u and t are defined by the Hasse
diagram. A labelling function L

R

: V

R

⇥ Lit! S for a refutation R over a set
of literals Lit satisfies that for all v 2 V

R

and t 2 Lit:

1. L

R

(v, t) = ? i↵ t /2 `

R

(v)
2. L

R

(v, t) = L

R

(v+
, t) t L

R

(v�, t) for an internal vertex
v and literal t 2 `

R

(v). ?

a b

ab

Due to condition (2) above, the labelling function for literals at internal vertices
is completely determined by the labels of literals at initial vertices. A variable x

is A-local in a pair (A, B) if x 2 Var(A)\Var(B), B-local if x 2 Var(B)\Var(A),
local if it is either of these, and shared otherwise.

a2a1a0

a2a1a0

a2a1a0

¿

¡

¬

J(a)
def
= (a2 ^ a1 ^ a0)

T (a, a0)
def
= (a2 ^ a1) a0

2 ^ a0
1) ^ ¿

(a2 ^ a1) a0
2 ^ a0

1) ^ ¡

(a2 ^ a1) a0
2 ^ a0

1) ^ ¬

(a2 ^ a1) a0
2 ^ a0

1) ^ √

(a0
2 ^ a0

1 _ a0
2 ^ a0

1 _ a0
2 ^ a0

1)) a0
0

F (a)
def
= a0 ^ (a1 _ a2)

Fig. 2. A transition system implementing a binary counter.

a2a1a01 [a01] a1 [?] a2 [?] a2a1a
0
2 [a02]

a02a
0
1a

0
0 [a02 _ a01 _ a00]

a00 [>]

a2a01 [a01] a1a
0
2 [a02]

a01 [a01]

a02 [a02]

a01a
0
0 [a02 ^ a01 _ a02 ^ a00]

a00 [a02 ^ a01 ^ a00]

⇤ [a02 ^ a01 ^ a00]

J(a) = a2 ^ a1

T (a, a0) = (a2 _ a1 _ a0
1)^

(a2 _ a1 _ a0
2)^

(a0
2 _ a0

1 _ a0
0)

F (a0) = a0
0

Fig. 3. Refutation with McMillan’s interpolant of J(a)^T (a, a0) and F (a0). The figure
shows a contradictory subset of the clauses of a CNF encoding of the formulae.

4.1 Labelling Functions and Interpolation

Definition 5 (Labelling Function). Let (S,v,u,t) be the lattice below, where
S = {?, a, b, ab} is a set of symbols and v, u and t are defined by the Hasse
diagram. A labelling function L

R

: V

R

⇥ Lit! S for a refutation R over a set
of literals Lit satisfies that for all v 2 V

R

and t 2 Lit:

1. L

R

(v, t) = ? i↵ t /2 `

R

(v)
2. L

R

(v, t) = L

R

(v+
, t) t L

R

(v�, t) for an internal vertex
v and literal t 2 `

R

(v). ?

a b

ab

Due to condition (2) above, the labelling function for literals at internal vertices
is completely determined by the labels of literals at initial vertices. A variable x

is A-local in a pair (A, B) if x 2 Var(A)\Var(B), B-local if x 2 Var(B)\Var(A),
local if it is either of these, and shared otherwise.

The interpolant, in this case is the image. In general,
interpolants for an appropriately constructed formula are
overapproximations of images.

Wednesday, March 30, 16

Reachability with Interpolants

Forward Reachability Analysis

Unsafe

Start

Algorithm: Compute images till a fixed point is reached.

Image of Qx : 9x : Q(x) ^ T (x , x 0)

Fixed Point on Q(x): 8x , x 0.9x : [Q(x) ^ T (x , x 0)) Q(x 0)]

4

Forward Reachability Analysis

Unsafe

Start

Algorithm: Compute images till a fixed point is reached.

Image of Qx : 9x : Q(x) ^ T (x , x 0)

Fixed Point on Q(x): 8x , x 0.9x : [Q(x) ^ T (x , x 0)) Q(x 0)]

4

Reachability with Interpolants

S(x
0

) U(x
1

)I (x
1

)

Interpolant I (x1) satisfies that:

S(x0) ^ T (x0, x1)) I (x1) (over-approximates the image)

I (x1) ^ U(x1) is UNSAT (contains no unsafe state)

6

Start

Unsafe

Approximate Image

Wednesday, March 30, 16

Interpolation Slogans

• A poor person’s quantifier elimination

• A separator between two regions of a
search space

• A summary of why a bounded-
property holds occurs

• An approximate image operator

• A relevance heuristic that articulates
the core reason for a proof

Program Property

Constraint
Generation

Solver

Formula

UNSAT SAT
Satisfying

Assignment
Proofs,

Interpolants

Wednesday, March 30, 16

Bounded Execution as a Formula

int x = i;
int y = j;
while (foo()) {
// Code that does not
// modify 'x' or 'y'.
 x = y + 1;
 y = x + 1;
}
if (i = j && x <= 10)
 assert(y <= 10);

int x0= i;
int y0 = j;
x1 = y0 + 1
y1 = x0 + 1;
x2 = y1 + 1
y2 = x1 + 1;

x3 = y2 + 1
y3 = x2 + 1;
if (i = j &&
 x3 <= 10) {
 if (y3 > 10)
 Err:// ERROR
REACHED
}

Wednesday, March 30, 16

Bounded Execution and Interpolants

int x0= i;
int y0 = j;
x1 = y0 + 1
y1 = x0 + 1;
x2 = y1 + 1
y2 = x1 + 1;

x3 = y2 + 1
y3 = x2 + 1;
if (i = j &&
 x3 <= 10) {
 if (y3 > 10)
 Err:// ERROR
REACHED
}

A

B

x2 = i+ 2 ^ y2 = j + 2

• Symbolic representation of the states
reachable after two iterations

• Image computation for program
statements typically requires quantifier
elimination in that theory.

Wednesday, March 30, 16

Another Interpolant

int x = i;
int y = j;
while (foo()) {
// Code that does not
// modify 'x' or 'y'.
 x = y + 1;
 y = x + 1;
}
if (i = j && x <= 10)
 assert(y <= 10);

• Potential loop invariant

• Invariant computation often requires
fixed point computation, quantifier
elimination, or even both.

i = j =) x2 y2

Wednesday, March 30, 16

A Space of Interpolants

int x0= i;
int y0 = j;
x1 = y0 + 1
y1 = x0 + 1;
x2 = y1 + 1
y2 = x1 + 1;

x3 = y2 + 1
y3 = x2 + 1;
if (i = j &&
 x3 <= 10) {
 if (y3 > 10)
 Err:// ERROR
}

A

B

x2 = i+ 2

^ y2 = j + 2

• Multiple interpolants exist.

• They differ in size, logical strength, symbols, etc.

• The ideal one depends on the problem

i = j =)
x2 y2

i = j =)
y2 x2

i = j =)
x2 = y2

Wednesday, March 30, 16

Approximation of States with Interpolants

A

I

B

States reachable
in n-steps

States reaching
error in m steps

Approximate
k-image

States that enter
and exit a function

States on
similar paths

The challenge is to encode these constraints and respect the
vocabulary condition

States on one
program path

Function
summary

Wednesday, March 30, 16

Abstract Reachability Tree Construction

38/98

Software model checking
[McMillan, 2006]

L = 0;

do {

assert(L==0);

L = 1;

old = new;

if (*){

L = 0;

new++;

}

} while (new!=old);

lock()

unlock()

L=0

L!=0

ERR

L==0

L=1

old=new

new!=old

L!=0

ERR

Example: McMillan 2006, Graphic Ruemmer ’14
Wednesday, March 30, 16

Sequence Interpolants from Reachability Tree

Example: McMillan 2006, Graphic Ruemmer ’14

40/98

In the example

L=0

L==0

L=1

old=new

new!=old

L!=0

ERR

Wednesday, March 30, 16

Abstract Reachability Construction

• Interpolants Decorate Positions on the Reachability Tree

• They denote state that are reached at those points

• A covering check is used to determine if all states at some location have been
visited

• More complicated than predicate abstraction or fixed point computation due
to non-monotonicity of interpolant construction

Wednesday, March 30, 16

Solver = Constraint
Solving +

Interpolant
Construction

Dynamic System
(Circuit, Program,
Hybrid System)

Analyzer =
Constraint
Generation

Property Checking
with Interpolants

Wednesday, March 30, 16

Theory

Theory

Combination EUF

Boolean Structure

Quantifiers

Recursion

Loops

Conditionals/
Assignments

Data Types

(Relative)
Completeness

Generalization

Path Sharing

Property Checking
with Interpolants

Wednesday, March 30, 16

Generalizations of Classical Interpolants

58/98

General picture

Wednesday, March 30, 16

1 A Brief History of Interpolation

2 Verification with Interpolants

3 Interpolant Construction

4 Further Reading and Research

Wednesday, March 30, 16

Dynamic System

Analyzer =
Constraint
Generation

Property Checking
with Interpolants

Theory

Theory

Combination EUF

Boolean Structure

Quantifiers

Wednesday, March 30, 16

¬y

Flows in Resolution Proofs

A B

x

x, y z

y

⇤y

? >

• Literals flow around in the
proof

• Literals with opposite polarity
cancel each other

• Propositional interpolant
construction can be viewed as
controlling initial inputs and
gating the flows using a circuit

• Want to let shared variables
flow through the A-part and
restrict flow from the B-part.

y? >

y, z

y

Wednesday, March 30, 16

Interpolating Proof Rules

A-Hyp
C [{` | var(`) 2 var(B)}] (C 2 A)

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
(x 2 var(B))

B-Hyp
C [>]

(C 2 B)

Annotate formulae with Partial Interpolants

Split rules based on vocabulary

Wednesday, March 30, 16

a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 _ a3]

a3 [a3 ^ a2]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3 ^ a2]

(a) McMillan’s System

a1a2 [?] a1a3 [?]

a2 [?]a2a3 [?]

a3 [?]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3]

(b) Symmetric System

Fig. 1. Refutation yielding di↵erent interpolants for di↵erent systems.

Definition 4 (McMillan’s System). McMillan’s system Itp
M

maps vertices
in an (A, B)-refutation R as to partial interpolants as defined below.

For an initial vertex v with `(v) = C

(A-clause) C [C|

B

] if C 2 A (B-clause) C [T] if C 2 B

For an internal vertex v with piv(v) = x, `(v+) = C1 _ x and `(v�) = C2 _ x

C1 _ x [I1] C2 _ x [I2]
C1 _ C2 [I3]

(A-Res) if x /2 Var(B), I3
def= I1 _ I2

(B-Res) if x 2 Var(B), I3
def= I1 ^ I2

See [11] for McMillan’s proof of correctness. Example 1 shows that the inter-
polants obtained from Itp

M

and Itp
S

are di↵erent and that Itp
M

is not symmetric.

Example 1. Let A be the formula (a1_a2)^ (a1_a3)^a2 and B be the formula
(a2 _ a3) ^ (a2 _ a4) ^ a4. An (A, B)-refutation R is shown in Figure 1. The
partial interpolants in McMillan’s system are shown in Figure 1(a) and those
in the symmetric system in Figure 1(b). We have that Itp

M

(R) = a3 ^ a2 and
Itp

S

(R) = a3. For the inverse systems, the interpolants are Itp0
M

(R) = a2 ^ a3

and Itp0
S

(R) = a3. Observe that Itp
M

(R)) Itp
S

(R), Itp
S

(R) , ¬Itp0
S

(R), and
¬Itp0

S

(R)) ¬Itp0
M

(R). C
Example 2 below shows that there are interpolants that cannot be obtained

by these systems and that the interpolants from Itp
M

and Itp
S

may coincide.

Example 2. Let A be the formula a1^(a1_a2) and B be the formula (a1_a2)^a1.

Applying Interpolating Proof Rules

B-Hyp
C [>]

A-Hyp
C [C|B]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

A = (a1 _ a2) ^ (a1 _ a3) ^ a2

B = (a2 _ a3) ^ (a2 _ a4) ^ a4

I =
Wednesday, March 30, 16

A = (a1 _ a2) ^ (a1 _ a3) ^ a2

B = (a2 _ a3) ^ (a2 _ a4) ^ a4

I = a3 ^ a2

a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 _ a3]

a3 [a3 ^ a2]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3 ^ a2]

(a) McMillan’s System

a1a2 [?] a1a3 [?]

a2 [?]a2a3 [?]

a3 [?]

a2a3 [>] a2a4 [>] a4 [>]

a2 [>]

a3 [>]

⇤ [a3]

(b) Symmetric System

Fig. 1. Refutation yielding di↵erent interpolants for di↵erent systems.

Definition 4 (McMillan’s System). McMillan’s system Itp
M

maps vertices
in an (A, B)-refutation R as to partial interpolants as defined below.

For an initial vertex v with `(v) = C

(A-clause) C [C|

B

] if C 2 A (B-clause) C [T] if C 2 B

For an internal vertex v with piv(v) = x, `(v+) = C1 _ x and `(v�) = C2 _ x

C1 _ x [I1] C2 _ x [I2]
C1 _ C2 [I3]

(A-Res) if x /2 Var(B), I3
def= I1 _ I2

(B-Res) if x 2 Var(B), I3
def= I1 ^ I2

See [11] for McMillan’s proof of correctness. Example 1 shows that the inter-
polants obtained from Itp

M

and Itp
S

are di↵erent and that Itp
M

is not symmetric.

Example 1. Let A be the formula (a1_a2)^ (a1_a3)^a2 and B be the formula
(a2 _ a3) ^ (a2 _ a4) ^ a4. An (A, B)-refutation R is shown in Figure 1. The
partial interpolants in McMillan’s system are shown in Figure 1(a) and those
in the symmetric system in Figure 1(b). We have that Itp

M

(R) = a3 ^ a2 and
Itp

S

(R) = a3. For the inverse systems, the interpolants are Itp0
M

(R) = a2 ^ a3

and Itp0
S

(R) = a3. Observe that Itp
M

(R)) Itp
S

(R), Itp
S

(R) , ¬Itp0
S

(R), and
¬Itp0

S

(R)) ¬Itp0
M

(R). C
Example 2 below shows that there are interpolants that cannot be obtained

by these systems and that the interpolants from Itp
M

and Itp
S

may coincide.

Example 2. Let A be the formula a1^(a1_a2) and B be the formula (a1_a2)^a1.

Applying Interpolating Proof Rules

B-Hyp
C [>]

A-Hyp
C [C|B]

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]

Wednesday, March 30, 16

McMillan’s Interpolation System

A-Hyp
C [{` | var(`) 2 var(B)}] (C 2 A)

A-Res
C _ x [I1] x _D [I2]

C _D [I1 _ I2]
(x 2 var(A) \ var(B))

B-Res
C _ x [I1] x _D [I2]

C _D [I1 ^ I2]
(x 2 var(B))

B-Hyp
C [>]

(C 2 B)

Theorem. The partial interplant labelling the empty clause is an

interplant for A and B.

Wednesday, March 30, 16

Program =
Control + Data

Analyzer =
Constraint
Generation

Property Checking
with Interpolants

Theory

Theory

Combination EUF

Boolean Structure

Quantifiers

Wednesday, March 30, 16

Equality Proofs

f(u, y) = z u = x v = y
f(x, v) 6= z

f(u, y) 6= z

⇤

• Deduced literals may not be in A or in B

• New terms may use non-shared symbols

• Interpolant may be over terms not in the proof

A = u = x ^ f(u, y) = z

B = v = y ^ f(x, v) 6= z

I = f(x, y) = z

f(u, y) = f(x, v)

Wednesday, March 30, 16

Coloured Congruence Graphs

f(u, y) = z u = x v = y
f(x, v) 6= z

⇤

A = u = x ^ f(u, y) = z

B = v = y ^ f(x, v) 6= z

I = f(x, y) = z

f(x, y) = z

f(x, v) = z

z

f(u, y)

f(x, y)

f(x, v)

6=

Wednesday, March 30, 16

Interpolation from Coloured Congruence Graphs

A = u = x ^ f(u, y) = z

B = v = y ^ f(x, v) 6= z

I = f(x, y) = z

z

f(u, y)

f(x, y)

f(x, v)

6=

• Modify graph to be colourable

• Take summaries A-paths by endpoints that
are over the shared vocabulary

• Summarize B-paths as premises for A-
summaries

Wednesday, March 30, 16

Interpolation with B-Premises

6=

• Mixes A and B reasoning

• Endpoints of B-reasoning paths are
antecedents of implications for A

• Implication introduced by combination of
congruence and shared reasoning

A = v = f(z, u) ^ y = f(z, x)

B = u = x ^ v 6= y

I =

v

f(z, u)

f(z, x)

y

u = x =) v = y

Wednesday, March 30, 16

1 A Brief History of Interpolation

2 Verification with Interpolants

3 Interpolant Construction

4 Further Reading and Research

Wednesday, March 30, 16

Interpolation and SMT

1995 Huang, Constructing Craig Interpolation Formulas. (OTTER)

2001 Amir, McIlraith, Partition-Based Logical Reasoning.

2003 McMillan, Interpolation and SAT-Based Model Checking.

200 Henziger, Jhala,Majumdar,McMillan, Abstractions from Proofs

2005 McMillan, An Interpolating Theorem Prover

1957 1960 1970 1980 1990 2000 2010

2005 to present

Interpolation for theories: numeric,
bit-vectors, strings, arrays, etc.

Interpolation for equality and theory
combinations.

Quantified interpolants.

Sequence, tree and DAG
interpolants.

Solver = Constraint
Solving + Interpolant

Construction

Program = Control
+ Data

Analyzer =
Constraint
Generation

Wednesday, March 30, 16

Analysis with Interpolants

2003 McMillan, Interpolation and SAT-Based Model Checking.

2004 Henzinger, Jhala, Majumdar, McMillan, Abstraction from Proofs.

2006 McMillan, Lazy Abstraction with Interpolants

2009 Vizel, Grumberg, Interpolation-Sequence Based Model Checking

2010 Heizmann, Hoenicke, Podelski, Nested Interpolants

2012 Albarghouthi, Gurfinkel, Chechik, Whale: An Inteprolation-Based
Algorithm for Inter-Procedural Verification

1957 1960 1970 1980 1990 2000 2010

2006 onwards2006 onwards

Loops Interpolant
Sequence

Recursion Tree Interpolant

Multiple
Paths DAG Interpolant

Frameworks Horn Clauses

Solver = Constraint
Solving + Interpolant

Construction

Program = Control
+ Data

Analyzer =
Constraint
Generation

Wednesday, March 30, 16

Analysis of Interpolants

2006 Jhala, McMillan, A Practical and Complete Approach to Predicate Refinement. Theory Independent

2010 D. Kroening, Purandare, Weissenbacher, Interpolant Strength.

Propositional Logic

2012 Rollini, Sery, Sharygina. Leveraging Interpolant Strength in Model Checking.

Propositional Logic

2012 Alberti, Brutomesso, Ghilardi, Ranise, Sharygina, Lazy Abstraction with
Interpolants for Arrays.

2013 Albarghouthi, McMillan, Beautiful Interpolants.

2013 Ruemmer, Subotic, Exploring Interpolants.

1957 1960 1970 1980 1990 2000 2010

Solver = Constraint
Solving + Interpolant

Construction

Program = Control
+ Data

Analyzer =
Constraint
Generation

Wednesday, March 30, 16

Further Reading: Propositional Interpolants

1995 Huang, Constructing Craig Interpolation Formulas. (OTTER)

1997
Jan Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for
bounded arithmetic.

1997 Pudlák, Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations

2003 McMillan, Interpolation and SAT-Based Model Checking.

2006 Yorsh, Musuvathi, A Combination Method for Generating Interpolants.

2009 Biere, Bounded Model Checking (in Handbook of Satisfiability).

2010 D. Kroening, Purandare, Weissenbacher. Interpolant Strength.

Wednesday, March 30, 16

Further Reading: Equality Interpolants

1996 Fitting, First-Order Logic and Automated Theorem Proving

2005 McMillan, An Interpolating Theorem Prover

2006 Yorsh, Musuvathi, A Combination Method for Generating Interpolants.

2009 Fuchs, Goel, Grundy, Krstic, Tinelli, Ground Interpolation for the Theory of Equality.

2014 Bonacina, Johansson, Interpolation Systems for Ground Proofs in Automated Reasoning

Wednesday, March 30, 16

Interpolation in Theories

2005 McMillan. Interpolating Theorem Prover LA(Q)

2006 Kapur, Majumdar, Zarba, Interpolation for Data Structures Datatype theories

2007 Rybalchenko, Sofronie-Stokkermans, Constraint Solving for Interpolation LA(Q)

2008 Cimatti, Griggio, Sebastiani, Efficient Interpolant Generation in Satisfiability
Modulo Theories LA(Q), DL(Q), UTVPI

2008 Jain, Clarke, Grumberg, Efficient Craig Interpolation for Linear Diophantine
(dis)Equations and Linear Modular Equations LDE, LME

2009 Cimatti, Griggio, Sebastiani, Interpolant Generation for UTVPI UTVPI

2011 Griggio, Effective Word-Level Interpolation for Software Verification Bit-Vectors

Wednesday, March 30, 16

Interpolation in Theory Combinations

2005 McMillan. Interpolating Theorem Prover LA(Q) over EUF over Bool

2005 Yorsh and Musuvathi, A Combination Method for Generating Interpolants Nelson-Oppen

2009 Cimatti, Griggio, Sebastiani, Efficient Generation of Craig Interpolants in
Satisfiability Modulo Theories

Delayed Theory
Combination

2009 Goel, Krstic, Tinelli, Ground Interpolation for Combined Theories Proof transformation

2012 Kovacs, Voronkov, Playing in the Gray Area of Proofs Proof Transformation

Wednesday, March 30, 16

