
An Introduction to Hybrid Automata,
Numerical Simulation and
Reachability Analysis

Goran Frehse
SyDe Summer School, September 10, 2015
Univ. Grenoble Alpes – Verimag,
2 avenue de Vignate, Centre Equation,
38610 Gières, France,
frehse@imag.fr

frehse@imag.fr

Overview

Hybrid Automata

Numerical Simulation

Set-Based Reachability

Conclusions

2

Overview

Hybrid Automata

Running Example

Definition and Semantics

Numerical Simulation

Set-Based Reachability

Conclusions

3

Running Example: Ball on String

m
Fs

Fg

xr

xr + L

x

(a) extension

m

Fg
xr

xr + L

x

(b) freefall

4

Equations of motion

• dynamics in freefall when x ≥ xr, with mass m,

mẍ = Fg = −mg.

• dynamics in extension when x ≤ xr, with spring
constant k, damping factor d,

mẍ = Fg + Fs = −mg + kxr − kx− dẋ.

• transition when x = xr + L, collision factor c ∈ [0, 1],

ẋ′ = −cẋ.

5

Hybrid automaton model

auxiliary variable v = ẋ, so v̇ = ẍ.

clip from SpaceEx Model Editor1

1 G. Frehse, C. L. Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “Spaceex: Scalable verification of hybrid systems,” in CAV’11, ser. LNCS,
Springer, 2011. 6

Behavior

0 0.5 1 1.5 2 2.5
−1

0

1

x0

x1

x2

x3 x4

x5

t

po
sit

ion
x

0 0.5 1 1.5 2 2.5

−5

0

5

v0

v1

v−2

v2

v3

v4

v5

t

ve
loc

ity
v

7

Overview

Hybrid Automata

Running Example

Definition and Semantics

Numerical Simulation

Set-Based Reachability

Conclusions

8

Hybrid Automata (Alur, Henzinger, ’95)[2][3]

• locations Loc = {ℓ1, . . . , ℓm} and variables
X = {x1, . . . , xn} define the state space Loc× RX,

• transitions Edg ⊆ Loc× Lab× Loc define location
changes with synchronization labels Lab,

• invariant or staying condition Inv ⊆ Loc× RX,
• flow relation Flow, where Flow(ℓ) ⊆ RẊ × RX, e.g.,

ẋ = f(x);

• jump relation Jump, where Jump(e) ⊆ RX × RX′ , e.g.,

Jump(e) = {(x, x′) | x ∈ G ∧ x′ = r(x)},

• initial states Init ⊆ Inv.

9

Run Semantics

(ℓ0, x0)
δ0,ξ0−−→ (ℓ0, ξ0(δ0))

α0−→ (ℓ1, x1)
δ1,ξ1−−→ (ℓ1, ξ1(δ1)) . . .

with (ℓ0, x0) ∈ Init, αi ∈ Lab ∪ {τ}, and for i = 0, 1, . . .:

1. Trajectories: (ξ̇(t), ξ(t)) ∈ Flow(ℓ) and ξi(t) ∈ Inv(ℓi)

for all t ∈ [0, δi].
2. Jumps: (ξi(δi), xi+1) ∈ Jump(ei),

ei = (ℓi, αi, ℓi+1) ∈ Edg, and xi+1 ∈ Inv(ℓi+1).

A state (ℓ, x) is reachable if there exists a run with
(ℓi, xi) = (ℓ, x) for some i.

10

Example: Ball on String

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−5

0

5

x0

ξ0(δ0) = x1

ξ3(δ3) = x4
ξ1(δ1)

x2

ξ2(δ2) = x3

ξ4(δ4) = x5

position x

ve
loc

ity
v

11

Overview

Hybrid Automata

Numerical Simulation

Solving ODEs

Computing Trajectories and Jumps

Set-Based Reachability

Conclusions

12

Solving ODEs

Given an ordinary differential equation (ODE)

ẋ = f(x), with initial value x0,

find ξ(t) with ξ(0) = x0 and ξ̇(t) = f(ξ(t)) for all t ≥ 0.

Numerical solution by computing x0, . . . , xN such that
xi ≈ ξ(ti) at time points t0, . . . , tN.2

Using fixed time step h: ti = ih.

2 R. P. Canale and S. C. Chapra, “Numerical methods for engineers,” Mc Graw Hill, New
York, 1998. 13

Euler’s Method

Compute x0, . . . , xN with the sequence

xi+1 = xi + f(xi)h.

Comparing to Taylor series around xi,

xi+1 = xi + ẋih +
ẍi
2!h

2 + . . .+

(n−1)
xi
n! hn + · · · ,

obtain estimate of local error εa = O(h2).

• global error εg = O(h)⇒ first-order method
• accuracy limited by numerical roundoff error O(1/h)

14

Ball on String in Extension: Euler’s Method

0 0.2 0.4 0.6 0.8 1

−1

0

1 h = 0.05

h = 0.025
h = 0.0125

t

po
sit

ion
x

15

Ball on String in Extension: Euler’s Method

x1

x2

x3

h = 0.05
h = 0.025

−1.5 −1 −0.5 0 0.5 1 1.5

−10

−5

0

5

10

15

x0

x

ve
loc

ity
v

16

Stability

The linear ODE
ẋ = ax,

converges to zero iff a < 0.

Euler’s method

xi+1 = xi + f(xi)h = xi + axih = (1 + ah)xi

converges to zero iff |1 + ah| < 1⇒ conditionally stable.

17

Backwards Euler Method

Compute x0, . . . , xN with the sequence

xi+1 = xi + f(xi+1)h,

solved for xi+1 at each i using root-finding (Newton’s method).
⇒ implicit method

Backwards Euler for ẋ = ax,

xi+1 = xi + axi+1h =
1

1− ahxi

converges for all a < 0, h > 0⇒ unconditionally stable.

18

Runge-Kutta Methods

Explicit Runge-Kutta methods compute the sequence

xi+1 = xi + ϕ(xi, h)h,

ϕ(xi, h) = a1k1 + a2k2 + · · ·+ ankn,

weights ai,qij and derivative kj = f(x̂i
j) at intermediate states

x̂i
1
= xi,

x̂i
2
= xi + q11k1h,

x̂i
3
= xi + q21k1h + q21k2h,

...
x̂i

n
= xi + q(n−1)1k1h + q(n−1)2k2h + · · ·+ q(n−1)(n−1)kn−1h

19

Runge-Kutta Methods (Kutta, 1901)

Runge-Kutta method defined by n and parameters ai,qij

chosen to match first n terms of Taylor series.

Remaining degrees of freedom used to optimize, e.g.,
truncation error O(hn+1) and global error O(hn) for
n = 2, . . . , 5.

Ralston’s method has the smallest truncation error for n = 2:

k1 = f(x̂1
i), x̂1

i = xi,

k2 = f(x̂2
i), x̂2

i = xi + 3/4k1h,
ϕ(xi, h) = 1

3k1 +
2
3k2.

20

Ball on String in Extension: Ralston’s Method

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5
h = 0.1

x1

x2

x3

x̂2
1

x̂2
2

x̂2
3

h = 0.05

t

po
sit

ion
x

21

Ball on String in Extension: Ralston’s Method

x̂2
1

x̂2
2

x̂2
3

x̂2
4

h = 0.1

x1

x2

x3

x4

h = 0.05

−1 −0.5 0 0.5

−5

0

5

x0

x

ve
loc

ity
v

22

Error Estimation

Error estimation using difference between

• results for time steps h/2 and h,
• results for (n− 1)th and nth order solver.

Runge-Kutta-Fehlberg (RKF) methods (Fehlberg, 1970)

• compare (n− 1)th and nth order RK,
• reuse intermediate results,
• no more evaluations than nth order RK.

Popular: RKF 2(3) and RKF 4(5), aka ode23 and ode45.

23

Adaptive Time Steps

Adapt time step using error estimation εa and desired error ϵd.

Heuristics3:
h← h

∣∣ϵd/εa
∣∣0.25 if εa < ϵd

h← h
∣∣ϵd/εa

∣∣0.2 if εa ≥ ϵd

3 W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cambridge
University Press, 2007. 24

Stiff Systems

Stiff ODEs have time constants (Eigenvalues) differing by a
factor of 1000 or more.

Solvers take tiny time steps throughout the entire time horizon

Special solvers are available for stiff ODEs, using implicit
methods to achieve stability at larger time steps.

Ball on String example is stiff for small mass.

25

Ball on String: Stiff for Small Mass

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0
h = 5 · 10−4

h = 2.5 · 10−4

h =

{
2.5 · 10−4, t ≤ 0.4
10 · 10−4, t > 0.4x0

t

po
sit

ion
x

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

h = 5 · 10−4

h = 2.5 · 10−4

h =

{
2.5 · 10−4, t ≤ 0.4
10 · 10−4, t > 0.4

v0

t

ve
loc

ity
v

26

Overview

Hybrid Automata

Numerical Simulation

Solving ODEs

Computing Trajectories and Jumps

Set-Based Reachability

Conclusions

27

Computing Trajectories and Jumps

Numerical simulation of hybrid automata:

• use ODE solver to approximate trajectories,
• detect when trajectory enters guard,
• detect when trajectory leaves invariant.

ODE solver offer zero crossing detection using root-finding
algorithms.

Detecting guards/invariants using root functions is
computationally expensive and potentially inaccurate.

28

Shortcomings4

• Missed roots
violations of invariant or entering guard go undetected.

• Increased cost
ODE solvers reuse intermediate states for increasing time
sequence. Lost through back-and-forth of root-finding.

• Spurious behavior
Numerically approximated state may lie slightly outside
the guard or invariant, so constraints are relaxed

4 F. Zhang, M. Yeddanapudi, and P. Mosterman, “Zero-crossing location and detection
algorithms for hybrid system simulation,” in IFAC World Congress, 2008, pp. 7967–7972. 29

Zeno Behavior

Zeno behavior occurs if infinitely many events occur in a
bounded time interval.5

Chattering Zeno: zero-time events

Genuine Zeno: event times converge towards a fixed point

Simulator seems to get “stuck” as switching times converge.

Ball on String example zeno if upside-down (negative gravity)
⇒ bouncing ball.

5 A. D. Ames and S. Sastry, “Characterization of zeno behavior in hybrid systems using
homological methods,” in ACC’05, 2005. 30

Ball on String: Zeno Behavior

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

x0

t

po
sit

ion
x

0 1 2 3 4 5 6

−5

0

5

10

v0

t

ve
loc

ity
v

31

Accounting for Nondeterminism

The biggest challenge is nondeterminism:

• select initial state and successor states in jump relation;
• choose between transitions if guards overlap;
• choose jump time from interval of time;
• differential inclusions, such as ẋ ∈ [−1, 1], require to

pick derivative for each time step;

Number of runs increases exponentially with each choice.

Simulators like Simulink, Modelica, or Ptolemy use purely
deterministic models that jump as soon as possible.

32

Overview

Hybrid Automata

Numerical Simulation

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

SpaceEx (advertisement)

Conclusions

33

Set-Based Reachability

Extending numerical simulation from numbers to sets

• account for nondeterminism
• exhaustive
• infinite time horizon

Downsides:

• only approximate for complex dynamics
• generally not scalable in # of variables
• trade-off between runtime and accuracy

34

Reachability Algorithm

One-step successors by time elapse from set of states S,

PostC(S) =
{
(ℓ, ξ(δ))

∣∣ ∃(ℓ, x) ∈ S : (ℓ, x) δ,ξ−→ (ℓ, ξ(δ))
}
.

One-step successors by jump from set of states S,

PostD(S) =
{
(ℓ′, x′)

∣∣ ∃(ℓ′, x′) ∈ S,∃α ∈ Lab ∪ {τ} :
(ℓ, x) α−→ (ℓ′, x′)

}
.

35

Reachability Algorithm

Compute sequence

R0 = PostC(Init),
Ri+1 = Ri ∪ PostC(PostD(Ri)).

If Ri+1 = Ri, then Ri = reachable states.

• may not terminate if states unbounded (counter)
• problem undecidable in general6

6 T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about hybrid
automata?” Journal of Computer and System Sciences, vol. 57, pp. 94–124, 1998. 36

Ball on String: Reachable States

(clip from SpaceEx output)

37

HA with piecewise constant dynamics (PCDA)

• initial states and invariants given by conjunctions of linear
constraints,

• flows given by conjunctions of linear constraints over the
derivatives Ẋ, and

• jumps given by linear constraints over X ∪ X′, where X′

denote the variables after the jump.

One-step successors of PCDA can be computed exactly.

38

Polyhedra in Constraint Form

H-polyhedron (constraint form)

P =
{
x
∣∣∣ ∧m

i=1
aT

ix ≤ bi

}
,

with facet normals ai ∈ Rn and inhomogeneous
coefficients bi ∈ R.

vector-matrix notation:

P =
{
x
∣∣∣ Ax ≤ b

}
, with A =

(
aT

1
...
aT

m

)
,b =

(
b1
...

bm

)
.

39

Geometric Operations

0 0.2 0.4 0.6 0.8 100.20.40.60.81

x1

x2

Q
pos(Q)

x1

x2

P

Q

P ⊕Q

The convex hull
chull(Q) =

{∑
qi∈Q λi · qi

∣∣∣ λi ≥ 0,
∑

i λi = 1
}
,

The cone of Q is pos(Q) = {q · t | q ∈ Q, t ≥ 0}.

The Minkowski sum is P ⊕Q = {p+ q | p ∈ P ,q ∈ Q}.

40

Polyhedra in Generator Form

V-polyhedron (generator form)

P = (V,R) = chull (V)⊕ pos(chull(R)).

with vertices V ⊆ Rn and rays R ⊆ Rn

conversion between H- and V-polyhedra is expensive

cube: 2n constraints, 2n vertices

cross-polytope (diamond): 2n vertices, 2n constraints

41

Time Elapse with Polyhedra

For PCDA, it suffices to consider straight-line trajectories:

Lemma (Constant Derivatives7)

There is a trajectory ξ(t) from x = ξ(0) to x′ = ξ(δ), δ > 0, iff
η(t) = x+ qt with q = (x′ − x)/δ is a trajectory from x to x′.

7 P.-H. Ho, “Automatic analysis of hybrid systems,” Technical Report CSD-TR95-1536,
PhD thesis, Cornell University, Aug. 1995. 42

Time Elapse with Polyhedra

Given polyhedra P = {x | Ax ≤ b}, Q = {q | Āq ≤ b̄}

Time successors (without invariant):

P↗Q = {x′ | x ∈ P ,q ∈ Q, t ∈ R≥0, x′ = x+ qt}.

Eliminating q = x′−x
t for t > 0 and multiplying with t:

P↗Q =
{
x′
∣∣∣ Ax ≤ b ∧ Ā(x′ − x) ≤ b̄ · t ∧ t ≥ 0

}
.

Quantifier elimination of t squares the number of constraints.

43

Time Elapse with Polyhedra – Geometric Version

x1

x2

Q
pos(Q)

(c) cone pos(Q)

x1

x2

P

P ⊕ pos(Q)

(d) P↗Q = P ⊕ pos(Q)

Intersect with invariant:

postC(ℓ× P) = ℓ×
(
P↗Flow(ℓ)

)
∩ Inv(ℓ).

44

Discrete Successors

Edge e = (ℓ, α, ℓ′) with guard x ∈ G and nondeterministic
assignment x′ = Cx+w, w ∈ W,

postD(ℓ× P) = ℓ′ ×
(
C(P ∩ G)⊕W

)
∩ Inv(ℓ′).

If linear map C singular, constraints require quantifier
elimination, otherwise

CP = {x | AC−1x ≤ b}

45

Computational Cost

polyhedra
operation m constraints k generators

cone m2 k
Minkowski sum exp k2

linear map m / exp k
intersection 2m exp

46

Complex Behavior in PCDA

36

Linear Hybrid Automata

Ɣ chaos
– even with 1 variable, 1 location, 1 transition (tent map)
– observed in actual production systems [Schmitz,2002]

states of the Tent map
source: wikipedia

Schmitz, J. P. M., D. A. Van Beek, and J. E. Rooda. "Chaos in discrete production systems?." Journal of Manufacturing Systems 21.3
(2002): 236-246.c

brewery and chaotic throughput [Schmitz,2002]

47

40

Example: Multi-Product Batch Plant

48

41

Example: Multi-Product Batch Plant

Ɣ Cascade mixing process
– 3 educts via 3 reactors

� 2 products

Ɣ Verification Goals
– Invariants

• overflow
• product tanks never empty

– Filling sequence

Ɣ Design of verified
controller

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12

49

42

Verification with PHAVer

Ɣ Controller + Plant
– 266 locations, 823 transitions

(~150 reachable)
– 8 continuous variables

Ɣ Reachability over infinite time
– 120s—1243s, 260—600MB
– computation cost increases

with nondeterminism
(intervals for throughputs,
initial states)

Controller Controlled Plant

50

43

Verification with PHAVer

51

Overview

Hybrid Automata

Numerical Simulation

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

SpaceEx (advertisement)

Conclusions

52

Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA)

• initial states and invariants are polyhedra,
• flows are affine ODEs

ẋ = Ax+ Bu, u ∈ U ,

• jumps have a guard set and assignments

x′ = Cx+w, w ∈ W .

53

Continuous successors

ẋ = Ax+ Bu, u ∈ U ,

trajectory ξ(t) from ξ(0) = x0 for given input signal ζ(t) ∈ U :

ξx0,ζ(t) = eAtx0 +

∫ t

0
eA(t−s)Bζ(s)ds.

reachable states from set X0 for any input signal:

Xt = eAtX0 ⊕ Yt,

Yt =

∫ t

0
eAsUds = eAtX0 ⊕ lim

δ→0

⌊t/δ⌋⊕
k=0

eAδkδU .

54

Computing a Convex Cover

X0

Ω0

Xδ

Ω1

X2δ

Ω2

Compute Ω0,Ω1, . . . such that∪
0≤t≤T

Xt ⊆ Ω0 ∪ Ω1 ∪

55

Time Discretization

X0
Ω0

Xδ

Ω1

X2δ

Ω2

Semi-group property: (Xkδ)δ = X(k+1)δ

Time discretization: X(k+1)δ = eAδXkδ ⊕ Yδ.

Given initial approximations Ω0 and Ψδ such that∪
0≤t≤δ

Xt ⊆ Ω0, Yδ ⊆ Ψδ,

Xt is covered by the sequence
Ωk+1 = eAδΩk ⊕Ψδ.

56

Initial Approximations

X0

Xδ

Ω0

(a) convex hull and pushing facets (b) convex hull and bloating

57

Initial Approximations – Forward Bloating

Bloating based on norms:8

Ω0 = chull(X0 ∪ eAδX0)⊕ (αδ + βδ)B,
Ψδ = βδB,
αδ = µ(X0) · (e∥A∥δ − 1− ∥A∥δ),
βδ = 1

∥A∥µ(BU) · (e∥A∥δ − 1),

with radius µ(X) = maxx∈X∥x∥ and unit ball B.

8 A. Girard, “Reachability of uncertain linear systems using zonotopes,” in HSCC, 2005,
pp. 291–305. 58

Initial Approximations – Forward Bloating

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

Forward bloating is tight on X0 and bloated on Xδ.

Improvements:

• intersect forward bloating with backward bloating
• bloat based on interpolation error (shown before)

59

Wrapping Effect

X0

eAδX0

Appr(eAδX0)

Appr(eAδAppr(eAδX0))

(a) with wrapping effect

X0

eAδX0

Appr(eAδX0)
Appr(eA2δX0)

(b) using a wrapping-free algorithm

avoid increasing complexity through approximation
Ω̂k+1 = Appr(eAδΩ̂k ⊕Ψδ).

wrapping effect: error accumulation
60

Wrapping Effect

Solution: Split sequence9

Ψ̂k+1 = Appr(eAkδΨδ)⊕ Ψ̂k, with Ψ̂0 = {0},
Ω̂k = Appr(eAkδΩ0)⊕ Ψ̂k.

satisfies Ω̂k = Appr(Ωk) (wrapping-free) if

Appr(P ⊕Q) = Appr(P)⊕ Appr(Q),

e.g., bounding box.

9 A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of reachable sets of linear
time-invariant systems with inputs,” in HSCC, 2006, pp. 257–271. 61

Overview

Hybrid Automata

Numerical Simulation

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

SpaceEx (advertisement)

Conclusions

62

Polyhedra

X0

Ω0

Xδ

Ω1

X2δ

Ω2

polyhedra
operation m constr. k gen.

convex hull exp 2k
Minkowski sum exp k2

linear map m / exp k
intersection 2m exp

63

Ellipsoids10

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

polyhedra ellipsoids
operation m constr. k gen. n × n matrix

convex hull exp 2k approx
Minkowski sum exp k2 approx
linear map m / exp k O(n3)
intersection 2m exp approx

10 A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Springer,
2014. 64

Zonotopes

v1
v2

v3

v4
c

Zonotope with center c ∈ Rn and generators v1, . . . , vk ∈ Rn

P =

{
c+

∑k

i=1
αivi

∣∣∣∣ αi ∈ [−1, 1]
}
.

linear map: map center and generators
Minkowski sum: add centers, take union of generators

65

Zonotopes11

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

polyhedra ellipsoids zonotopes
operation m constr. k gen. n × n matrix k generators

convex hull exp 2k approx approx
Minkowski sum exp k2 approx 2k
linear map m / exp k O(n3) k
intersection 2m exp approx approx

11 A. Girard, “Reachability of uncertain linear systems using zonotopes,” in HSCC, 2005,
pp. 291–305. 66

Support Functions

dρP(d)

P

0

(a) support function in direction d

d3

d4

d1

d2

P

⌈P⌉D

(b) outer approximation

support function = linear optimization (efficient!)
ρP(d) = max{dTx | x ∈ P}.

computed values define polyhedral outer approximation

⌈P⌉D =
∩
d∈D

{
dTx ≤ ρP(d)

}
.

67

Support Functions

dρP(d)

P

0

(a) support function in direction d

d3

d4

d1

d2

P

⌈P⌉D

(b) outer approximation

• linear map: ρMX (ℓ) = ρX (MTℓ), O(mn),
• convex hull: ρchull(P∪Q)(ℓ) = max{ρP(ℓ), ρQ(ℓ)}, O(1),
• Minkowski sum: ρX⊕Y(ℓ) = ρX (ℓ) + ρY(ℓ), O(1).

68

Support Functions (Le Guernic, Girard,’09)[13]

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2
X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

support functions: lazy approximation on demand

polyhedra ellipsoids zonotopes support f.
operation m constr. k gen. n × n matrix k generators —

convex hull exp 2k approx approx O(1)
Minkowski sum exp k2 approx 2k O(1)
linear map m / exp k O(n3) k O(n2)
intersection 2m exp approx approx opt. / approx

69

68

Example: Switched Oscillator

Ɣ Switched oscillator
– 2 continuous variables
– 4 discrete states
– similar to many circuits

(Buck converters,…)

Ɣ plus linear filter
– m continuous variables
– dampens output signal

Ɣ affine dynamics
– total 2 + m continuous variables

70

28

Example: Switched Oscillator

●  Low number of directions sufficient?
–  here: 6 state variables

12 box constraints
(axis directions)

72 octagonal constraints
(± xi ± xj)

71

69

Example: Switched Oscillator

Ɣ Scalability Measurements:
– fixpoint reached in O(nm2) time
– box constraints: O(n3)

– octagonal constraints: O(n5)

0.1

1.0

10.0

100.0

1000.0

10000.0

1 10 100 1000

number of variables n

ru
nt

im
e

[s
]

72

85

Example: Controlled Helicopter

Ɣ 28-dim model of a Westland Lynx helicopter
– 8-dim model of flight dynamics
– 20-dim continuous H' controller for disturbance rejection
– stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

Photo by Andrew P Clarke

73

86

Example: Helicopter

Ɣ 28 state variables + clock

CAV’11: 1440 sets in 5.9s
1440 time steps

74

87

Ɣ 28 state variables + clock

Example: Helicopter

HSCC’13: 32 sets in 15.2s (4.8s clustering)
2 -- 3300 time steps, median 360

convex in 29
dimensions!
convex in 29
dimensions!

75

88

Example: Chaotic Circuit

Ɣ piecewise linear Rössler-like circuit
Pisarchik, Jaimes-Reátegui. ICCSDS’05

Ɣ added nondet. disturbances
Ɣ 3 variables, hard!

76

Nonlinear Dynamics – Linearization

ẋ = f(x),

with f globally Lipschitz continuous.

Linearization: choose domain S (partition, sliding window)

overapproximate in S with ẋ = Ax+ u,u ∈ U

linearizing f(x) around x0 ∈ S gives

aij =
∂fi
∂xj

∣∣∣∣
x=x0

and b = f(x0)− Ax0.

U = Appr {f(x)− (Ax+ b), x ∈ S} ⊕ b.

77

Example: Van der Pol Oscillator12

ẋ = y
ẏ = y(1− x2)− x

hybridization: here triangular partition of size 0.05

partitioning generally doesn’t scale well

12 E. Asarin, T. Dang, and A. Girard, “Hybridization methods for the analysis of nonlinear
systems,” Acta Inf., vol. 43, no. 7, pp. 451–476, 2007. 78

Nonlinear Dynamics – Polynomial Approximations

Bernstein polynomials for polynomial f(x)

• polyhedral approximation of successors13

Taylor models

• polynomial approximations of Taylor expansion
• represent sets with polynomials
• Flow* verification tool[16]

13 T. Dang and R. Testylier, “Reachability analysis for polynomial dynamical systems using the
bernstein expansion,” Reliable Computing, vol. 17, no. 2, pp. 128–152, 2012. 79

Overview

Hybrid Automata

Numerical Simulation

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

SpaceEx (advertisement)

Conclusions

80

90

SpaceEx Verification Platform

Browser-based GUI
–2D/3D output
–runs remotely

81

91

SpaceEx Model Editor

Components = Hybrid Automata
– real-values variables
– ODE, linear DAE

82

92

SpaceEx Model Editor

Block diagrams connect
components
– templates, nesting

83

93

PHAVer
–constant dynamics (LHA)
–formally sound and exact

SpaceEx Reachability Algorithms

Support Function Algo
–many continuous variables
–low discrete complexity

Simulation
–nonlinear dynamics
–based on CVODE

spaceex.imag.frspaceex.imag.fr
84

Overview

Hybrid Automata

Numerical Simulation

Set-Based Reachability

Conclusions

85

Conclusions

• Hybrid systems are easy to model with hybrid automata
but difficult to analyze.

• Numerical simulation scales, but is not exhaustive and
critical behavior may be missed.

• Set-based reachability covers all runs, sufficient for
safety and bounded liveness.

• computational cost,
• scalable for piecewise affine dynamics

• Remaining challenges: trade-off between approximation
accuracy and computational cost, scalable extension to
nonlinear dynamics

86

References I

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,”
Theoretical Computer Science, vol. 138, pp. 3–34, 1995.

[3] T. A. Henzinger, “The theory of hybrid automata.,” in LICS, Los Alamitos: IEEE
Computer Society, 1996, pp. 278–292.

[13] C. Le Guernic and A. Girard, “Reachability analysis of linear systems using support
functions,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 250–262, 2010.

[16] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Taylor model flowpipe construction
for non-linear hybrid systems,” in RTSS, IEEE Computer Society, 2012,
pp. 183–192, ISBN: 978-1-4673-3098-5.

87

	Hybrid Automata
	Running Example
	Definition and Semantics

	Numerical Simulation
	Solving ODEs
	Computing Trajectories and Jumps

	Set-Based Reachability
	Piecewise Constant Dynamics
	Piecewise Affine Dynamics
	Set Representations
	SpaceEx (advertisement)

	Conclusions

