EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material

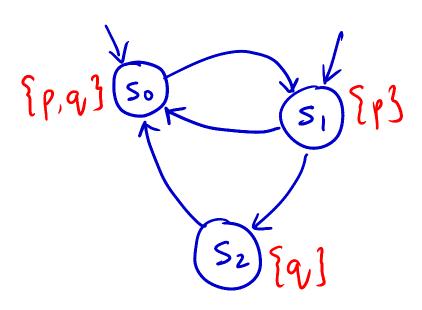
Sanjit A. Seshia EECS, UC Berkeley

Acknowledgments: G. Holzmann

Checking if M satisfies \$\phi\$: Steps

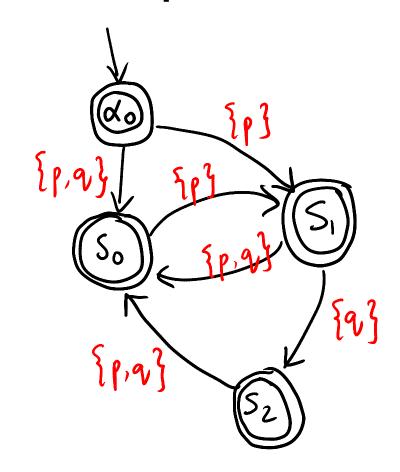
- Compute Buchi automaton B corresponding to ~φ
- 2. Compute the Buchi automaton A corresponding to the system M
- 3. Compute the *synchronous* product P of A and B
 - Product computation defines "accepting" states of P based on those of B
- 4. Check if some "accepting" state of P is visited infinitely often
 - If so: we found a bug
 - If not, no bug in M

Example of Step 2



Kripke structure

What's different between the two? What's the same?



Corresponding Buchi automaton (transitions on labels not shown go to a non-accepting sink state "err")³

Step 1: Buchi Automaton from Kripke Structure

- Given: Kripke structure M = (S, S₀, R, L)
 - $-L: S \rightarrow 2^{AP}$, AP set of atomic propositions
- Construct Buchi automaton

$$A = (\Sigma, S \cup \{\alpha_0, err\}, \Delta, \{\alpha_0\}, S \cup \{\alpha_0\})$$
 where:

- Alphabet, $\Sigma = 2^{AP}$
- − Set of states = $S \cup \{\alpha_0, err\}$
 - α_0 is a special start state, err is a (sink) error state
- All states are accepting except err
- $-\Delta$ is transition relation of A such that:
 - $\Delta(s, \sigma, s')$ iff R(s, s') and $\sigma = L(s')$
 - $\Delta(\alpha_0, \sigma, s)$ iff $s \in S_0$ and $\sigma = L(s)$

Need to also add transitions to dummy error state err for other symbols σ not covered above

Step 2: Compute synchronous product of A with B

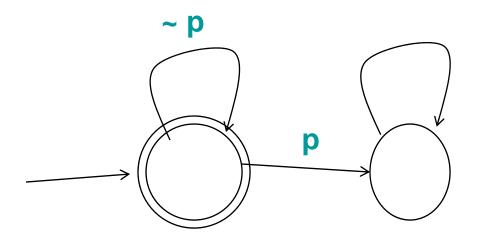
- A and B are both Buchi automata with the same alphabet
- Synchronous product:
 - $-A = (\Sigma, S_1, \Delta_1, \{s_0\}, S_1 \setminus \{err\})$ (err is dummy error state)
 - $-B = (\Sigma, S_2, \Delta_2, \{s_0'\}, F')$
 - Product P = $(\Sigma, S_1 \times S_2, \Delta, \{s_0, s_0'\}, F)$
 - $\Delta((s_1, s_2), \sigma, (s_1', s_2')) = \Delta_1(s_1, \sigma, s_1') \wedge \Delta_2(s_2, \sigma, s_2')$
 - $(s_1, s_2) \in F \text{ iff } s_1 \neq err \land s_2 \in F'$

Example of Step 2

Property φ: **F** q

Step 3: Checking if some state is visited infinitely often

- Suppose I show you the graph corresponding to the product automaton
- What graph property corresponds to "visited infinitely often"?



Step 3: Checking if some state is visited infinitely often

- Suppose I show you the graph corresponding to the product automaton
- What graph property corresponds to "visited infinitely often"?
 - Checking for a cycle with an accepting state
 - We also need to check that the accepting state is reachable from the initial state

DFS + cycle detection

 How can we modify DFS to do cycle detection?

DFS + cycle detection

- How can we modify DFS to do cycle detection?
 - Find strongly connected components, and then check if there's one with an accepting state [But: we don't have the graph with us to start with]
 - Use DFS to find an accepting state s
 - On finding one, explore its child nodes.
 - If a child node is on the stack, or if s has a self loop, we're done [Easy to see why]
 - Else, do a new DFS starting from s to see if you can reach it again [Why will this work? Any modifications to the basic DFS needed?]
 - SPIN's "nested DFS" algorithm

Checking if M satisfies \$\phi\$: Steps

- Compute Buchi automaton B corresponding to ~
- Compute the Buchi automaton A corresponding to the system M
- 3. Compute the *synchronous* product P of A and B
 - Product computation defines "accepting" states of P based on those of B
- 4. Check if some "accepting" state of P is visited infinitely often
 - If so: we found a bug (What does a counterexample look like?)
 - If not, no bug in M

What if our property is not LTL?

- Let's say the property is specified directly as a Buchi automaton B
- Then, to check if the system A satisfies the property, we use the same algorithm as before:
 - Compute complement of B: call it B'
 - Compute sync. product of A and B'
 - Check for loops involving "accepting" states
- IMP: Buchi automata are closed under complementation, union, intersection
- Nondeterministic Buchi automata are strictly more expressive than deterministic Buchi automata!

Time/Space Complexity

- Size measured in terms of:
 - N_A num of states in system automaton
 - N_B num of states in property automaton (for complement of the property we want to prove)
 - N_S num of bits to represent each state
 - N_F num transitions in product automaton
 - Total size = N = (N_A * N_B * N_S) + N_E
- Checking G p properties w/ DFS
 - Time: ? Space: ?
- Checking arbitrary (liveness) properties w/ nested DFS
 - Time: ? Space: ?

Time/Space Complexity

- Size measured in terms of:
 - N_A num of states in system automaton
 - N_B num of states in property automaton (for complement of the property we want to prove)
 - N_S num of bits to represent each state
 - N_F num transitions in product automaton
 - Total size = N = (N_A * N_B * N_S) + N_E
- Checking G p properties w/ DFS
 - Time: O(N*L) [X] Space: O(N) {L lookup time to check if state visited already}
- Checking arbitrary (liveness) properties w/ nested DFS
 - Time: O(N*L) [2X] Space: O(N)

Optimizations

- Complexity is a function of N_E + N_A * N_B * N_S
- Natural strategy to reduce time/space is to reduce:
 - − N_E,N_A → Partial-order reduction, Abstraction (later lecture)
 - N_B → not really needed, N_B is usually small
 - N_S → State compression techniques

Partial Order Reduction

- Edges of automata correspond to "actions" taken by the automaton
 - Assume that you label each edge with its corresponding action
- Idea: Some actions are independent of each other
 - E.g. "internal actions" of systems composed asynchronously
 - You can permute them without changing the end state reached
 - Both interleavings yield same end state

An Example

P1
$$\frac{x_{-1}}{s_0} \xrightarrow{x_{-1}} \frac{g = g + 2}{s_2} \xrightarrow{s_2} - -->$$
P1 $\frac{y_{-1}}{t_0} \xrightarrow{y_{-1}} \frac{g = g \times 2}{t_1} \xrightarrow{t_2} \frac{g}{t_2} - -->$
P2

Initial state: x = y = g = 0

Starting in (so, to), what are the possible executions?

Some Sample Properties: Are they preserved by P-O Reduction?

• F (g , 2)

• G (x , y)

Key point: The property matters in deciding dependencies!

Atomic propositions that appear in the temporal logic property are termed "relevant atomic propositions"

Implementing P-O Reduction

- At each state s, some set of actions is enabled: enabled(s)
- Of this set, we want to explore only a subset ample(s) s.t.
 - We explore a subset of states and transitions
 - The property holds for the reduced system iff it holds for the full system
- Pick an arbitrary element of ample(s) and execute that action
- QN: How to compute ample(s)?

Independence and Invisibility

- Important properties of actions a, b: independence & invisibility
- Independence
 - Enabledness: Action a should not disable b, and vice-versa
 - Commutativity: a(b(s)) = b(a(s))
- Invisibility
 - a and b should not affect the values of any 'relevant' atomic propositions in the LTL property

Problem

- Computing ample(s) exactly is as hard as computing the reachable states of the system!
 - One of the conditions defining ample(s):
 Along every path starting at s, an action a dependent on action b in ample(s) cannot be executed before b
- See [Ch. 10, Clarke, Grumberg, Peled] for a proof

Computing ample(s)

- Conservative heuristics to compute actions that are NOT in ample(s):
 - ample(s) cannot have actions that are visible or dependent on other actions in enabled(s)
 - If the same variable appears in two actions, they are dependent
 - 2. If two actions appear in the same process/module, they are dependent
 - 3. If an action shares a variable with a relevant atomic proposition, then it is visible

Summary of P-O Reduction

- Very effective for asynchronous systems
- SPIN uses it by default

State Compression Techniques

- Lossless
 - Collapse compaction
 - Essential a state encoding method
- Lossy
 - Hash compaction
 - Replace state vector by its hash; if you visit a state with same hash as previously visited, then don't explore further
 - Bit-state hashing
 - Think of the hash as a memory address of a single bit that represents whether the state has/hasn't been visited
 - SPIN uses multiple (2) hashes per state
 - 500 MB of memory can store 2 . 109 states with 2 hashes
 - Are errors found this way still valid errors?
 - Often even if a state is missed, its successors are reached