Abstraction & Symbolic Model Checking without BDDs

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

Key Optimizations in (Symbolic) Model Checking

• Abstraction
 – Compute a smaller state graph by “merging states” s.t. if the property holds on the smaller system model, it holds on the larger one

• Symmetry Reduction
 – Group states into equivalence classes by exploiting symmetries in the model

• Compositional Reasoning
 – Compose proofs of correctness of modules to prove the overall system correct
Today’s Lecture

• Abstraction
 – Counter-example guided abstraction refinement (CEGAR)

• Symbolic Model Checking without BDDs
 – Uses SAT instead of BDDs
 – Started with Bounded Model Checking
 – Extended to Unbounded Model Checking
 • Abstraction + BMC
 • Interpolation-based model checking

Abstraction
Abstraction

• Extracting information from a system description that is relevant to proving a property
• Goal: Reduce size of system model

• Terminology:
 – Original model = Concrete system/model

Abstraction (2)

• Reduce the size of the system model by throwing out information / grouping states
 – If this information is irrelevant to the property of interest (i.e., the property is true on the original model iff it is true on the abstract model) then it is a precise abstraction
 – If the property is true on the original model if it is true on the abstract model, it is a safe abstraction
Example

• Abstractions exhibit more behaviors
• Consider the following two properties on the original model and abstraction:
 \[
 G(go \rightarrow X \text{ stop}) \quad \quad G F \text{ go}
 \]

A Simple Form of Abstraction

• Suppose the temporal logic property mentions only a subset of variable \(V' \) of the entire set \(V \)
• Can I use this information to construct a precise abstraction of the original model?
A Simple Form of Abstraction

• Suppose the temporal logic property mentions only a subset of variable \(V' \) of the entire set \(V \)

• Can I use this information to construct a precise abstraction of the original model?
 – YES. One such method is the “cone of influence” reduction.
 • Transitively propagate syntactic dependences on variables and “delete” all variables not in the transitive closure

Formal Definition

• Abstraction is defined by an abstraction function

• Abstraction function \(\alpha : S \to \hat{S} \)
 – \(S \) – set of concrete states
 – \(\hat{S} \) – set of abstract states

• An abstraction induces an equivalence relation over the concrete states
 – Two concrete states are equivalent if they are mapped to the same abstract state
Formal Definition

• Suppose concrete system is \((S, S_0, R, L)\), and abstract system \((\hat{S}, \hat{S}_0, \hat{R}, \hat{L})\)
• Abstraction function \(\alpha : S \rightarrow \hat{S}\)
 – \(S\) – set of concrete states
 – \(\hat{S}\) – set of abstract states
• \(\hat{S}_0 = \{ t \mid \exists s . S_0(s) \land \alpha(s) = t \}\)
• \(\hat{R} = ?\)
 – How do we algorithmically construct \(\hat{S}_0\) and \(\hat{R}\)?
 – How are labels assigned to abstract states?

Example of Abstraction

• Our examples in this lecture will be abstractions that extract a subset of state variables
 – State variables partitioned into: visible and invisible
 – An abstract state is an evaluation of visible variables
 – What is \(\alpha\)?
 – Two concrete states that agree on values of visible variables are grouped together
Example

• Abstractions exhibit more behaviors

Abstraction and Properties

• If an LTL property is true on the abstract model, is it necessarily true on the concrete model?

• If an LTL property is false on the abstract model, is it necessarily false on the concrete model?
Cone-of-influence

- Suppose the property ϕ mentions a subset of variables V' of the total set V
 - Track variables that V' syntactically depend on, add them to V', and iterate until no new variable dependencies generated
 - Resulting V' is the cone-of-influence and its elements are the visible variables
- Problem: Final V' might be as big as V because it only tracks syntactic dependencies
 - But resulting abstraction is precise \Rightarrow if ϕ is false in abstract model it is false in concrete model

Example: Cone-of-influence can be conservative

![Diagram]

Let a, b, c, g be state variables

What are the expressions for next state variables c' and g'?

- Suppose we want to prove $G(c \Rightarrow Xc)$. What’s the cone of influence?
- If we make g invisible, can we still prove the property?
 - what about a and b?
Another approach to Abstraction

- Start with an arbitrary subset of variables as visible
 - An option: the ones mentioned in the property
- Construct abstract model, model check it
 - If property passes, we’re done
 - If we get a counterexample, check whether it is a counterexample for the concrete model
 - If yes, we’re done
 - If not (spurious counterex.) we must make more variables visible and repeat (REFINEMENT)

Counter-Example Guided Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

- Start with a choice of α
- Construct abstract model, model check it
 - If property passes, we’re done
 - If we get a counterexample, check whether it’s is a counterexample for the concrete model (How do we do this?)
 - If yes, we’re done
 - If not (spurious counterex.), we must refine α and repeat
Intuition about Refinement

- Remember that α partitions the concrete states into equivalence classes
 - C_1, C_2, \ldots, C_k
- A refinement α' can further break up the C_i's
 - States that are equivalent under α' should also be equivalent under α

Formal Definition of Refinement

- α' refines α if
 - $\forall s, t . \alpha'(s) = \alpha'(t) \Rightarrow \alpha(s) = \alpha(t)$
 - $\exists s, t . \alpha'(s) \neq \alpha'(t) \wedge \alpha(s) = \alpha(t)$

- Given above definition, why will the CEGAR iteration terminate?
Visible/Invisible Abstraction

• The set of variables is partitioned into visible V and invisible I

• Questions:
 – How do we construct the abstract model?
 • Given an arbitrary set of visible variables
 – How do we refine the abstraction?
 • i.e., how do we pick new variables to make visible?
 • We want to pick those that will remove the current spurious counterexample

Constructing Abstract Model

• Simply make all invisible variables take arbitrary values
 – Non-deterministically assigned 0 or 1 on each step
• How does this make model checking more efficient?
Constructing Abstract Model

• Simply make all invisible variables take arbitrary values
 – Non-deterministically assigned 0 or 1 on each step
• How does this make model checking more efficient?
 – Avoids some existential quantification, simplifies transition relation

Refining the Abstraction

• The CEGAR approach is most often used today in conjunction with a technique called Bounded Model Checking
• We will study abstraction-refinement in that context
Bounded Model Checking (BMC)

- **Given**
 - A FSM M described by S_0, R
 - A property $G p$ and a integer $k \geq 1$
- **Determine**
 - Does M generate a counterexample to $G p$ of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

Unfolding in BMC

- Unfold the model k times:
 \[U_k = R_0 \land R_1 \land \ldots \land R_{k-1} \]
- Use SAT solver to check satisfiability of $S_0 \land U_k \land E_k$
- A satisfying assignment is a counterexample of k steps
Old view on BMC

• Originally introduced as a debugging tool
 – By finding counterexamples
• Proving properties:
 – Only possible if a bound on the diameter of the state graph is known
 • The diameter is the maximum over shortest path lengths between any two states.
 – Worst case is exponential in system description.

New perspectives: BMC + CEGAR

• BMC + Abstraction can prove properties too!
• Here’s how it works:
 Why does this terminate?

 Create abstraction A
 Perform (unbounded) model checking on A

 Property true
 OK

 Counterexample of length k

 Extract information for refinement from refutation
 Proof fails

 Prove that this abstract counterexample of length k is a concrete counterex.
 using k-step BMC on M
 Proof succeeds

 Counterexample
Steps

1. Create abstraction A
2. Model check A
3. Prove that abstract counterexample is a concrete counterexample using BMC
4. Use refutation of abstract counterexample to do refinement

Checking Abstract Counterex.

• Recall: BMC for length k
 – Use SAT solver to check satisfiability of $S_0 \land U_k \land E_k$
• How do we use this to prove the abstract counterexample of length k also holds for concrete model?
Checking Abstract Counterex.

• Recall: we use BMC for the length k of the abstract counterexample
 – Use SAT solver to check satisfiability of
 \(S_0 \land U_k \land E_k \)
 under the partial assignment corresponding to values of the visible variables
 – If SAT solver reports “SAT” we have a concrete counterexample
 • What is a satisfying assignment?
 – If not, we have a refutation \(\Leftarrow \) proof of unsatisfiability

Refinement

• Given proof of unsatisfiability of
 \(S_0 \land U_k \land E_k \)
 under the partial assignment corresponding to values of the visible variables
• Look at unsatisfiable core of proof
 – Invisible variables that appear in the core indicate why the abstract counterexample is spurious
 – Make those variables visible
Modifying the Abstraction-Refinement Loop

- **Insight:** Why pick an abstraction to start with?
 - Initial abstraction may not be the best start point
 - Why not do BMC initially and use its results to generate abstractions?

Proof-based Abstraction (PBA)

- **BMC on M at depth k**
 - Cex?
 - No Cex?
 - Use refutation to choose abstraction
 - Increase k to k'
 - MC on abstraction
 - Property true?
 - OK
 - False, counterexample of length k'?

[McMillan, Amla, 2003]
Termination of PBA

- Depth k increases at each iteration
- Eventually $k > \text{diameter } d$
- If $k > d$, no counterexample is possible

CEGAR vs. PBA

- Refutation via k-step BMC
 - PBA refutes all concrete counterexamples of up to length k
 - CEGAR refutes only the abstract counterexample of length k
- So PBA does more work in the refutation, but usually results in fewer iterations of the loop
Abstract/Concrete Error Trace

Abstract trace OK

Abstract trace spurious

Abstraction and Reachability

• An abstraction expands the set of states reachable from the initial state
 – OVER-APPROXIMATION
• Instead of starting by abstracting states, one can directly abstract the transition relation
 – Each time you compute the set of next states, you get an over-approximation of the actual set of next states
 – Gives a way of computing an over-approximation of the set of reachable states
Abstraction using Interpolation

- Abstraction is extracting sufficient/relevant information from a system to prove a given property.
- This notion is in some sense closely related to a notion of “interpolant” and a lemma called “Craig's interpolation lemma”

Interpolation Lemma \(^{(Craig, 57)}\)

- If $A \land B = \text{false}$, there exists an interpolant A' for (A,B) such that:

 $A \implies A'$
 $A' \land B = \text{false}$
 A' refers only to common variables of A,B

- Example:
 $A = p \land q$, $B = \neg q \land r$, $A' = q$
Interpolants from Proofs

(Pudlak, Krajicek, 97)

• Interpolant A’ for A \land B:
 \[A \Rightarrow A' \]
 \[A' \land B = \text{false} \]
 A’ refers only to common variables of A, B

• Interpolants can be obtained from proofs
 – given a resolution-based refutation (proof of unsatisfiability) of A \land B,
 \[A' \text{ can be derived in time linear in the proof} \]

Interpolation based Model Checking

(McMillan, 2003)

• Main Idea: Pose the problem of over-approximating the set of next states as finding an interpolant

\[
S_0(v_0) \land R(v_0, v_1) \land R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k)
\]
Interpolation based Model Checking

For a fixed k:

1. Set Z initially to S_0
2. Do BMC starting from Z for k steps
 - If SAT: have we found a counterexample?
 - If UNSAT, continue
3. Use interpolation to compute over-approximation of next states of Z and add them back into Z
 - Can newly added states lead to error states in $k-1$ steps? In k steps?
4. If Z does not increase
 - We’ve reached a fixed point. Is the property true?
5. Otherwise, back to step 2

What set of states does A' represent?

$S_0(v_0) \land R(v_0, v_1) \land R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k)$

$A = S_0(v_0) \land R(v_0, v_1)$

$B = R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k)$

A' is a function of v_1 s.t.

1. $A \Rightarrow A'$
2. $A' \land B$ is unsat
Intuition

- A' tells us everything the prover deduced about the image of S_0 in proving it can't reach an error in k steps.
- Hence, A' is in some sense an abstraction of the image relative to the property and the bound k

Refinement

- Model checking may fail for a fixed k
 - May add a state that reaches error in k steps (getting SAT in step 2 with $Z \neq S_0$)
- Refinement is just increasing k
 - How big can k get?