Today’s Lecture

• Symbolic model checking with BDDs
 – Fairness
 – Counterexample/witness generation for general CTL
• Optimizations in Model checking
 – Abstraction (mostly next week)
 – Symmetry Reduction
 – Compositional Reasoning
• Simulation/Bisimulation
Fairness

- A computation path is defined as fair if a fairness constraint p is true infinitely often along that path
 - Fairness constraint is a state predicate
 - Generalized to set of fairness constraints \{p_1, p_2, \ldots, p_k\} by requiring each element of the subset to be true infinitely often
- Example: Every process in an asynchronous composition must be scheduled infinitely often

Why does Fairness matter?

- We need to model policies that enforce fairness in the model
 - Otherwise, we will get spurious counterexamples
 - Example: A scheduler might use round-robin scheduling amongst processes
 - Instead of verifying the system for a particular fixed fair scheduling strategy, we can verify it for all fair schedulers
Fairness in Symbolic Model Checking of CTL

• Suppose Fairness means that each element of \{p_1, p_2, \ldots, p_k\} must be true infinitely often.

• Fair formulation of EG f is: The largest set of states Z such that
 – All of the states in Z satisfy f
 – For all fairness constraints p_i, and all states s \in Z, there is a path of length 1 or greater from s to a state in Z satisfying p_i such that all states along that path satisfy f

 \[Z. \left[f \land \text{EX} \ Z \right] \]

Fairness in Symbolic Model Checking of CTL

• Fair formulation of EG f is: The largest set of states Z such that
 – All of the states in Z satisfy f
 – For all fairness constraints p_i, and all states s \in Z,
 • there is a path of length 1 or greater from s to a state in Z satisfying p_i such that all states along that path satisfy f
 • i.e., there is a next state of s satisfying f \lor (Z \land p_i)
 – What’s the fixpoint formulation of EG f with fairness? For EGf: \lor Z. [f \land \text{EX} \ Z]
Fairness in Symbolic Model Checking of CTL

- Fair formulation of EG f is: The largest set of states Z such that
 - All of the states in Z satisfy f
 - For all fairness constraints p_i, and all states $s \in Z$,
 - there is a path of length 1 or greater from s to a state in Z satisfying p_i such that all states along that path satisfy f
 - i.e., there is a next state of s satisfying $f \cup (Z \land p_i)$
 - $\forall Z. f \land (\land_i \text{EX } E[f \cup (Z \land p_i)])$

Counterexample Generation under Fairness

- Algorithm needs to be adjusted accordingly
 - Need to find a cycle that visits each fairness constraint p_i at least once
 - See Clarke et al. textbook for details
BDD-related Optimizations – Key Ideas

• Choose a good BDD variable ordering to start with
• Keep the support of computed BDDs as small as possible

What do we need to represent?

• Set of transitions: $R(v, v')$
• Sets of states: $S_0(v)$, intermediate results of fixpoint computations
Representing $R(v, v')$

- How should the v and v' variables be ordered in the BDD relative to each other?
- Keep v_i close to v_i' (interleave)

Relational Product

- Recall that reachability analysis involved computing
 \[S_{i+1}(v) = S_i(v) \lor (\exists v \{ S_i(v) \land R(v, v') \}) \]

- Relational Product operation is
 \[\exists v \{ S_i(v) \land R(v, v') \} \]
- This is done as one primitive BDD operation
 - Rather than an AND followed by EXISTS (why?)
Disjunctive Partitioning

- Suppose we have an asynchronous system composed of \(k \) processes
- Then, \(R(v, v') \) can be decomposed as
 \[
 \bigvee_i R_i(v, v')
 \]
 - Plug into expression for relational product
 - Does \(\exists \) distribute over \(\lor \)? What use is that?

Conjunctive Partitioning

- Suppose we have a synchronous system composed of \(k \) processes
- Then, \(R(v, v') \) can be decomposed as
 \[
 \bigwedge_i R_i(v, v')
 \]
 - Can we do the same optimization as on the previous slide? If not, is a similar optimization possible?
Conjunctive Partitioning

• Suppose we have an synchronous system composed of k processes
• Then, $R(v, v')$ can be decomposed as
 $\wedge_i R_i(v, v')$
 – Can we do the same optimization as on the previous slide? If not, is a similar optimization possible?
 • We can choose an order in which to quantify out variables and push the quantifiers as far in as possible
 • What order do we pick?

Key Optimizations in (Symbolic) Model Checking

• Abstraction
 – Compute a smaller state graph by “merging states” s.t. if the property holds on the smaller system model, it holds on the larger one
• Symmetry Reduction
 – Group states into equivalence classes by exploiting symmetries in the model
• Compositional Reasoning
 – Compose proofs of correctness of modules to prove the overall system correct