Today’s Lecture

Symbolic model checking with BDDs

Manipulate sets (of states and transitions) rather than individual elements and represent sets as Boolean formulas

Represent Boolean formulas as BDDs
Today’s Lecture

• Symbolic model checking
 – Basics of symbolic representation
 – Quantified Boolean formulas (QBF)
 – Checking G p
 – Fixpoint theory
 – Checking CTL properties

Sets as Boolean functions

• Every finite set can be represented as a Boolean function
 – Suppose the set has N (> 0) elements
 – Each element is encoded as a string of at least ⌊ log M ⌋ bits, where M is the number of elements in the universe
 – Characteristic Boolean function is the one whose ON-set (satisfying assignments) are those strings
 – Empty set is “False”
Set Operations as Boolean Operations

- $A \cup B = ?$
- $A \cap B = ?$
- $A \subset B = ?$
- Is A empty?

Sets of states and transitions

- Set of states \rightarrow each state s is bit-string comprising values of state variables
- Set of transitions \rightarrow
 - Transition is a state pair (s, s')
 - View the pair as a combined bit-string
- From now, we will view the set of states S and the transition relation R as Boolean formulas over vector of current state variables v and next state variables v'
 - $S(v)$, $R(v, v')$
Quantified Boolean Formulas

- Let F denote a Boolean formula, and v denote one or more Boolean variables.
- A quantified Boolean formula ϕ is obtained as:
 $$\phi ::= F | \exists v \phi | \forall v \phi | \phi \land \phi | \phi \lor \phi | \neg \phi$$
- How do you express $\exists v_i \phi$ and $\forall v_i \phi$ in terms of ϕ’s cofactors and standard Boolean operators?

Symbolic Model Checking $G p$

- Given: Set of initial states S_0, transition relation R
- Check property $G p$ (or $AG p$)
- How symbolic model checking will do this:
 - Compute S_0, S_1, S_2, \ldots where S_i is the set of states reachable from some initial state in at most i steps
 - What kind of search is this: DFS or BFS?
 - When do we stop?
 - After computing each S_i, check whether any element of S_i satisfies $\neg p$ [How?]
 - How do we generate a counterexample?
Reachability Analysis

• The process of computing the set of states reachable from some initial state in 0 or more steps
 – Often characterized as checking (AG true)
 – The resulting set is called “reachable set” or “set of reachable states”
 • This is the "strongest invariant" of the system → WHY? What is a "system invariant"?

Implementing Reachability Analysis

• How is S_i related to S_{i+1}?
 – In words
 – As a recurrence relation using QBF
Implementing Reachability Analysis

• How is S_i related to S_{i+1}?
• $v \in S_{i+1}$ iff $v \in S_i$ or there is a state $x \in S_i$ such that $R(x, v)$
• $S_{i+1}(v) = S_i(v) \lor \exists x \{ S_i(x) \land R(x, v) \}$

– $F[x/y]$ means that we substitute x for y in F
Implementing Reachability Analysis

```plaintext
i := 0;
do {
    i++;
    S_i(v) = S_{i-1}(v) \lor (\exists v \{ S_{i-1}(v) \land R(v,v') \}) [v/v']
} while (S_i(v) \neq S_{i-1}(v))
S_i(v) is the set of reachable states
```

BDD Issues

- Remember that S_i and R are represented as BDDs
- How large they grow determines the space and time usage of the algorithm
Backwards Reachability

- Suppose we want to verify $G\ p$
- The formula $\neg p$ characterizes all error states
- We can search backwards for a path to an error state from some initial state
 - Compute E_0, E_1, E_2, ... as states reachable from the error states in at most 0, 1, 2, ... steps
 - $E_0 = \neg p$
 - How to express E_{i+1} in terms of E_i?
- Why would we want to do backwards reachability analysis? Is it always better?

Verification of $G\ p$

- Corresponding CTL formula is AGp
- with Forward Reachability Analysis:
 - Check if some $S_i \land \neg p$ is true
- with Backward Reachability Analysis:
 - Set $E_0 = \neg p$
 - Check if $E_k \land S_0$ is true for any k
Symbolic Model Checking, General Case

- We will consider properties in CTL
 - As implemented in the original SMV model checker
 - Later we will see how LTL properties can be verified using symbolic techniques

Model Checking Arbitrary CTL

- Need only consider the following types of CTL properties:
 - $\exists X p$
 - $\exists G p$
 - $\exists (p \lor q)$

- Why? \leftarrow all others are expressible using above
 - $\forall G p = ?$
 - $\forall G (p \rightarrow (\forall F q)) = ?$
Fixpoint Theory

• Theory about elements/points that are unchanged by application of a function (hence “fixed point”)
• A concept from mathematics and denotational semantics of programming languages
• For us: Theoretical concepts and results that will help us design algorithms for CTL model checking

Fixpoint (Fixed point)

• Let Σ be a set (the “universe”), and $\Sigma' \subseteq \Sigma$
 – In model checking, $\Sigma = \text{True}$
• Let $\tau : P(\Sigma) \rightarrow P(\Sigma)$
 – $P(\Sigma)$ is the power set of Σ
• Definition: Σ' is a fixpoint of τ if $\tau(\Sigma') = \Sigma'$
Example of Fixpoint

• Let
 – \(\Sigma = \{s_0, s_1\} \)
 – \(\tau(Z) = Z \cup \{s_0\}, \ Z \subseteq \Sigma \)

• What is a fixpoint of \(\tau \)? Is there only one?

Model Checking Example

In the context of Reachability Analysis:
• What’s an example of a fixpoint we’ve seen already? What was \(\tau \)?
Model Checking Example

• What’s an example of a fixpoint we’ve seen already? What was τ?
 – A G true can be computed using a fixpoint formulation
 – τ computes the “next state”
• What we need: a way to generalize this for arbitrary CTL properties: EX, EG, EU
 – Fixpoint theory helps us do this

More Definitions

• τ is **monotonic** if for $P \subseteq Q$, $\tau(P) \subseteq \tau(Q)$
• τ is **U-continuous** if: $P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i)$
• τ is **\cap-continuous** if: $P_1 \supseteq P_2 \supseteq P_3 \ldots \Rightarrow \tau(\bigcap_i P_i) = \bigcap_i \tau(P_i)$
Main Theorems (Tarski)

• \(\tau \) is monotonic if for \(P \subseteq Q, \tau(P) \subseteq \tau(Q) \)
• \(\tau \) is \(\cup \)-continuous if: \(P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i) \)
• \(\tau \) is \(\cap \)-continuous if: \(P_1 \supseteq P_2 \supseteq P_3 \ldots \Rightarrow \tau(\bigcap_i P_i) = \bigcap_i \tau(P_i) \)

• A monotonic \(\tau \) on \(P(\Sigma) \) always has
 - a least fixpoint: written \(\mu \) \(Z. \ \tau(Z) \)
 - a greatest fixpoint: written \(\nu \) \(Z. \ \tau(Z) \)
 - least and greatest refer to the size of the fixpoint \(Z \).

Least and Greatest Fixpoints

• Let
 - \(\Sigma = \{s_0, s_1\} \)
 - \(\tau(Z) = Z \cup \{s_0\}, \ Z \subseteq \Sigma \)

• What is the least fixpoint of \(\tau \)? The greatest fixpoint? Are they the same?
Main Theorems (Tarski)

- \(\tau \) is **monotonic** if for \(P \subseteq Q, \tau(P) \subseteq \tau(Q) \)
- \(\tau \) is **\(\cup \) -continuous** if: \(P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i) \)
- \(\tau \) is **\(\cap \) -continuous** if: \(P_1 \supseteq P_2 \supseteq P_3 \ldots \Rightarrow \tau(\bigcap_i P_i) = \bigcap_i \tau(P_i) \)

- A **monotonic** \(\tau \) on \(P(\Sigma) \) always has
 - a least fixpoint: written \(\mu Z. \tau(Z) \)
 - a greatest fixpoint: written \(\nu Z. \tau(Z) \)
 - \(\mu Z. \tau(Z) = \bigcap \{ Z | \tau(Z) \subseteq Z \} \)
 - \(\nu Z. \tau(Z) = \bigcup \{ Z | \tau(Z) \supseteq Z \} \)

Main Theorems (Tarski)

- \(\tau \) is **monotonic** if for \(P \subseteq Q, \tau(P) \subseteq \tau(Q) \)
- \(\tau \) is **\(\cup \) -continuous** if: \(P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i) \)
- \(\tau \) is **\(\cap \) -continuous** if: \(P_1 \supseteq P_2 \supseteq P_3 \ldots \Rightarrow \tau(\bigcap_i P_i) = \bigcap_i \tau(P_i) \)
- A **monotonic** \(\tau \) on \(P(\Sigma) \) always has
 - a least fixpoint: written \(\mu Z. \tau(Z) \)
 - a greatest fixpoint: written \(\nu Z. \tau(Z) \)
 - \(\mu Z. \tau(Z) = \bigcap \{ Z | \tau(Z) \subseteq Z \} \)
 - \(\nu Z. \tau(Z) = \bigcup \{ Z | \tau(Z) \supseteq Z \} \)
 - \(\mu Z. \tau(Z) = \bigcup \{ \tau(\phi) | \tau \text{ is } \cup \text{-continuous} \} \)
 - \(\nu Z. \tau(Z) = \bigcap \{ \tau(\Sigma) | \tau \text{ is } \cap \text{-continuous} \} \)
Main Lemma for us

• If Σ is finite and τ is monotonic, then τ is also \cup-continuous and \cap-continuous
• Proof? (of \cup-continuous)
 τ is \cup-continuous if: $P_1 \subseteq P_2 \subseteq P_3 \ldots \implies \tau(\cup_i P_i) = \cup_i \tau(P_i)$

What’s Left?

• We have the needed fixpoint theory
• Now all we need to do is formulate the result of CTL operators as fixpoints
 – We will identify a CTL formula with the set of states that satisfy that formula
 • Remember that CTL formulas start with A or E which are interpreted over states, not runs
CTL Results as Fixpoints

• \(A\ G\ p = \nu\ Z.\ p \land AX\ Z \)
 – \(\tau(Z) = p \land AX\ Z \)
 – Given a point (state) in \(Z \), \(\tau \) maps it to another state that
 • Satisfies \(p \)
 • Can reach a state in \(Z \) along any execution path in one step
 • So what happens when we reach \(\tau \)'s fixpoint?
 – Remember: \(\nu \) fixpoint computation starts with the universal set \(\Sigma \) and works ‘downward’

Other Fixpoint Formulations

• \(EF\ p = \mu\ Z.\ p \lor EX\ Z \)
• \(EG\ p = \nu\ Z.\ p \land EX\ Z \)
• \(E(p \lor q) = \mu\ Z.\ q \lor (p \land EX\ Z) \)

• Intuitively:
 – Eventualities \(\rightarrow \) least fixpoints
 – Always/Forever \(\rightarrow \) greatest fixpoints
Model Checking CTL Properties

- We define a general recursive procedure called “Check” to do the fixpoint computations

- Definition of Check:
 - Input: A CTL property Π (and implicitly, R)
 - Output: A Boolean formula B representing the set of states satisfying Π

- If $S_0(v) \implies B(v)$, then Π is true

The “Check” procedure

Cases:
- If Π is a Boolean formula, then $\text{Check}(\Pi) = \Pi$
- Else:
 - $\Pi = \text{EX } p$, then $\text{Check}(\Pi) = \text{CheckEX}(\text{Check}(p))$
 - $\Pi = \text{E}(p \text{ U } q)$, then
 - $\text{Check}(\Pi) = \text{CheckEU}(\text{Check}(p), \text{Check}(q))$
 - $\Pi = \text{E } G \ p$, then $\text{Check}(\Pi) = \text{CheckEG}(\text{Check}(p))$

- Note: What are the arguments to CheckEX, CheckEU, CheckEG? CTL properties or Boolean formulas?
CheckEX

• CheckEX(p) returns a set of states such that p is true in their next states

• How to write this?

 \[\exists x \ [p(x) \cdot R(s, x)] \]

CheckEU

• CheckEU(p, q) returns a set of states, each of which is such that
 – Either q is true in that state
 – Or p is true in that state and you can get from it to a state in which p U q is true
CheckEU

• CheckEU(p, q) returns a set of states, each of which is such that
 – Either q is true in that state
 – Or p is true in that state and you can get from it to a state in which p U q is true

• Let Z₀ be our initial approximation to the answer to CheckEU(p, q)

• \(Z_k(v) = \{ q(v) + [p(v) \cdot \exists v' \{ R(v, v') \cdot Z_{k-1}(v') \}] \} \)

• What’s \(Z_0 \)? Why will this terminate?

Summary

• EGp computed similarly

• Definition of Check:
 – Input: A CTL property \(\Pi \) (and implicitly, R)
 – Output: A Boolean formula B representing the set of states satisfying \(\Pi \)

• All Boolean formulas represented “symbolically” as BDDs
 – “Symbolic Model Checking”
Counterexample/Witness Generation for CTL

- **Counterexample** = run showing how the property is violated
 - Formulas with universal path quantifier A
- **Witness** = run showing how the property is satisfied
 - Formulas with existential path quantifier E
 - Can also view as counterexample for the negated property
 - E.g. $E \mathcal{G} p$ and $A \mathcal{F} \neg p$

Witness Generation for $EG\ p$

- Fixpoint formulation for $E \mathcal{G} p$:
 - $\nu Z. \ p \land EX\ Z$
 - $\tau(Z) = p \land EX\ Z$
- Fixpoint computation yields sequence Z_0, Z_1, \ldots, Z_k
 - $Z_0 = \text{True}$ (universal set)
 - $Z_1 = \tau(\text{True}) = \ ?$
 - each Z_i is a BDD representing a set of states
 - How would you describe an element of Z_i?
- We need to generate the counterexample from $S_0, R, Z_0, Z_1, \ldots, Z_k$
Witness Generation for EG p

- Fixpoint computation yields sequence Z_0, Z_1, \ldots, Z_k
 - A state in Z_i ($i > 0$) satisfies p and there is a path of length $i-1$ from that state comprising states satisfying p
 - How would you describe an element of Z_k?
 - Remember: it’s the fixpoint

Witness Generation for EG p

- Fixpoint computation yields sequence Z_0, Z_1, \ldots, Z_k
 - A state in Z_i satisfies p and there is a path of length $i-1$ from that state comprising states satisfying p
 - How would you describe an element of Z_k?
 - State in Z_k has path from it of length $k-1$ or more (including a cycle) with all states satisfying p
 - If S_0 is contained in Z_k, any initial state has such a path
Witness Generation for $\text{EG } p$

- Let s_0 be an initial state with a desired witness path
 - We need to reproduce one such witness
 - How can we do this?

- Main insight: desired successor of s_0 also satisfies $\text{EG } p$, and so on
- Look for a cycle in such a computed chain
 - Why should there be a cycle?
Fairness

• A computation path is defined as fair if a fairness constraint p is true infinitely often along that path
 – Fairness constraint is a state predicate
 – Generalized to set of fairness constraints
 $\{p_1, p_2, \ldots, p_k\}$ by requiring each element of the subset to be true infinitely often

• Example: Every process in an asynchronous composition must be scheduled infinitely often