EECS 219C: Computer-Aided Verification

Properties as Automata and Explicit-State Model Checking

Sanjit A. Seshia
EECS, UC Berkeley

Mental Picture

System \[\xrightarrow{\text{trace}}\] Monitor Automaton
“checking that trace is correct”
Recap: Automata over Finite Traces

• (Regular) Finite automaton with accepting states
 – All finite traces (words) that take the automaton into the accepting state are “in its language”
• But behaviors (and traces) are infinite length
 – So we need a new notion of acceptance

Automata over Infinite Traces

• What does “Accept” mean?
 – Certain states of the automaton are called “accepting states”
 – The trace must visit an (any) accepting state infinitely often
• Such automata are called Büchi automata
 – Also Omega-automata (written ω-automata)
Example from Class

Language of the automaton = all finite-length binary strings with an odd number of 1s

Reg. expr.: $0^*1 (0 + 10^*1)^*$

If you interpret it as a Buchi automaton over infinite words: all infinite-length binary strings with an odd parity of 1s

w-regular expr: $0^*1 (0 + 10^*1)^w$

From Temporal Logic to Monitors

- A monitor for a temporal logic formula
 - is a finite automaton
 - Accepts exactly those behaviors that satisfy the temporal logic formula
 - “Accepts” means that an accepting state is visited infinitely often
- Properties are often specified as automata
Mental Picture

Automata monitoring Kripke Structures

- Recall: Trace is a sequence of the observable parts of states (labels)
- Each label is a set of atomic propositions, but can be thought of as a symbol in an alphabet
 - Alphabet is 2^{AP}, where AP is set of atomic propositions
Summary

• A (Buchi) automaton corresponding to a temporal logic formula ϕ accepts exactly those traces that satisfy ϕ

Automaton for $G p$, p a Boolean formula

[Diagram of a state machine labeled Start with transitions to Error labeled p and $\neg p$]
Automaton for F p

Start

! p

p

Seen p

Automaton for GFp

Start

! p

! p

p

p

Seen p
From LTL to Automata

• Any LTL formula can be translated to a corresponding automaton
• There are many translation algorithms
 – We will do this later (if time permits)
• How about the other way around?
 – Can an arbitrary Buchi automaton be translated into an LTL formula?

Automaton without LTL counterpart

Automata are more expressive than LTL

What traces does the automaton below accept?

Claim: This cannot be expressed in LTL.

(How about $a \land G (a \Rightarrow X X a)$?)
On to Model Checking …

Finite-State Model Checking

Temporal logic

G(p → X q)

Yes, property satisfied

Model Checker

Explicit-State

Model generation

System description
(RTL, source code, gates, etc.)
Explicit-State Model Checking

- Model checking exhaustively enumerates the states of the system
- State space can be viewed as a graph
- Explicit-state model checking
 - Explicitly enumerates each state and traverses each edge of the graph
- We will focus on explicit-state techniques as used in SPIN [G. Holzmann, won ACM Software Systems Award]

Issues with Explicit-State MC

- The graph is usually HUGE (> 10^6 nodes)
 - So can’t compute it a-priori
- But we are given an initial state (s_0) and a way of going from state to state (transition relation R)
 - In particular, we’ll assume that R is specified as a “set of actions”, each having a “enabling condition” and a “set of assignments” that cause a state change
Model Checking \(G \ p \)

- Consider the simplest property \(G \ p \)
 - \(p \) is a system invariant to be satisfied by all states
- Given the state graph, how can we check this?

- Graph traversal: DFS or BFS
Maintain 2 data structures:
1. Set of visited states
2. Stack with current path from the initial state

Potential problems?

Generating counterexamples

If the DFS algorithm finds an “error” state (in which \(p \) is not satisfied), how can we generate a counterexample trace from the initial state to that state?
Generating counterexamples

If the DFS algorithm finds an “error” state (in which \(p \) is not satisfied), how can we generate a counterexample trace from the initial state to that state?

Stack:

\[
\begin{array}{c}
\text{err} \\
\text{s1} \\
\text{err}
\end{array}
\]

Will this be the shortest counterexample?

DFS without State Set

- Only keep track of current stack
- No set of states to maintain
 - Each time you visit a state, check whether it’s on the stack
 - If so, don’t explore its edges
 - If not, do.
- Q1: Will this terminate?
- Q2: If yes: on state graph with \(n \) states, how long will it take?
Bounded Model Checking with DFS

• Same as the original DFS, except that you only allow your stack to grow up to B elements deep
 – Keep track of set of all visited states and explore a state only if it is not in this set
• If this returns “no error within B steps from initial state”, can you trust it?
 – NO! Example on next slide
Example

Solution: For each state, keep track of the least stack depth with which it was visited

Bound, B = 3

Breadth-First Search

- Visit states in order of distance from initial state
- Uses queue, No stack: how to generate counterexamples?
- Are the generated counterexamples the shortest?
Comparing DFS and BFS for Gp

- **Pros of BFS over DFS**
 - Shortest counterexample generated
- **Cons of BFS**
 - Need to store back-pointers to predecessor with each state in the state space representation (increased memory requirement)
 - Does not efficiently extend to liveness properties
 - Need to do cycle detection

What about non-Gp safety properties?

- **Recall:** safety properties \rightarrow finite counterexample trace
- So we can construct a monitor automaton with an “error” state that must be avoided
 - Construct product of that automaton with original system
 - Error state of product has “error” in the component corresponding to the monitor