Boolean Functions (Formulas) and Propositional Logic

- Variables: $x_1, x_2, x_3, \ldots, x_n \in \{0, 1\}$ (or \{true, false\})
- $F(x_1, x_2, x_3, \ldots, x_n) \in \{0, 1\}$
- F representable as the output (root) of a circuit (expression DAG) constructed with gates (Boolean operators)
 - Standard Boolean operators:
 - And (\land, \cdot), Or ($\lor, +$), Not ($\neg, \,'$)
 - Derived operators: Implies (\rightarrow) Iff (\leftrightarrow)
The Boolean Satisfiability Problem (SAT)

• Given:
 A Boolean formula F(x_1, x_2, x_3, …, x_n)

• Can F evaluate to 1 (true)?
 – Is F satisfiable?
 – If yes, return values to x_i’s (satisfying assignment) that make F true

Why is SAT important?

• Theoretical importance:
 – First NP-complete problem (Cook, 1971)

• Many practical applications:
 – Model Checking
 – Automatic Test Pattern Generation
 – Combinational Equivalence Checking
 – Planning in AI
 – Automated Theorem Proving
 – Software Verification
 – …
Terminology

- Literal
- Clause
- Conjunctive Normal Form (CNF)
- Disjunctive Normal Form (DNF)
- Tautology
 - Complexity of tautology checking for propositional logic?

An Example

- Inputs to SAT solvers are usually represented in CNF

\[(a + b + c) (a' + b' + c) (a + b' + c') (a' + b + c')\]
An Example

- Inputs to SAT solvers are usually represented in CNF

\[(a + b + c) (a' + b' + c) (a + b' + c') (a' + b + c')\]

Why CNF?
Why CNF?

- Input-related reason
 - Can transform from circuit to CNF in linear time & space (HOW?)
- Solver-related: Most SAT solver variants can exploit CNF
 - Easy to detect a conflict
 - Easy to remember partial assignments that don’t work (just add ‘conflict’ clauses)
 - Other “ease of representation” points?
- Any reasons why CNF might NOT be a good choice?

Complexity Issues

- **k-SAT**: A SAT problem with input in CNF with at most k literals in each clause
- Complexity for non-trivial values of k:
 - 2-SAT: ?
 - 3-SAT: ?
 - > 3-SAT: ?
2-SAT Algorithm

- **Linear-time algorithm** (Aspvall, Plass, Tarjan, 1979)
 - Think of clauses as implications
 - Think of a graph with literals as nodes
 - Find strongly connected components
 - Variable and its negation should not be in the same component

- Example 1:
 \[(a' + b) (b' + c) (c' + a)\]

- Example 2:
 \[(a' + b) (b' + c) (c' + a) (a + b) (a' + b')\]

3-SAT: Complexity Bounds (circa 2008)

- Obvious upper bound on run-time?
- Best known deterministic upper bound \(1.473^n\)
- Best known randomized upper bound \(1.324^n\)
- Best known lower bound \(n^{2.761}\)
Beyond Worst-Case Complexity

• What we really care about is “typical-case” complexity
• But how can one measure “typical-case”?
• Two approaches:
 – Is your problem a restricted form of 3-SAT? That might be polynomial-time solvable
 – Experiment with (random) SAT instances and see how the solver run-time varies with formula parameters (#vars, #clauses, …)
Special Cases of 3-SAT

• You already know one: 2-SAT
 – T. Larrabee observed that many clauses in ATPG tend to be 2-CNF
• Another useful class: Horn-SAT
 – A clause is a Horn clause if at most one literal is positive
 – If all clauses are Horn, then problem is Horn-SAT
 – E.g. Application:- Simulation checking between 2 finite-state systems

Horn-SAT

• Can we solve Horn-SAT in polynomial time? How? [homework]
 – Hint: view clauses as implications.

• Variants:
 – Negated Horn-SAT: Clauses with at most one literal negative
 – Renamable Horn-SAT: Doesn’t look like a Horn-SAT problem, but turns into one when polarities of some variables are flipped
Phase Transitions in k-SAT

- Consider a fixed-length clause model
 - k-SAT means that each clause contains exactly k literals
- Let SAT problem comprise m clauses and n variables
 - Randomly generate the problem for fixed k and varying m and n
- Question: How does the problem hardness vary with m/n?

3-SAT Hardness

As n increases, hardness transition grows sharper.
Threshold Conjecture

- For every k, there exists a c^* such that
 - For $m/n < c^*$, as $n \to \infty$, problem is satisfiable with probability 1
 - For $m/n > c^*$, as $n \to \infty$, problem is unsatisfiable with probability 1
- Conjecture proved true for $k=2$ and $c^*=1$
- For $k=3$, current status is that c^* is in the range 3.42 – 4.51
The (2+p)-SAT Model

- We know:
 - 2-SAT is in P
 - 3-SAT is in NP
- Problems are (typically) a mix of binary and ternary clauses
 - Let \(p \in \{0,1\} \)
 - Let problem comprise \((1-p)\) fraction of binary clauses and \(p \) of ternary
 - So-called (2+p)-SAT problem

Experimentation with random (2+p)-SAT

- When \(p < \sim 0.41 \)
 - Problem behaves like 2-SAT
 - Linear scaling
- When \(p > \sim 0.42 \)
 - Problem behaves like 3-SAT
 - Exponential scaling

- Nice observations, but don’t help us predict behavior of problems in practice
Backbones and Backdoors

• **Backbone** [Parkes; Monasson et al.]
 – Subset of literals that must be true in every satisfying assignment (if one exists)
 – Empirically related to hardness of problems

• **Backdoor** [Williams, Gomes, Selman]
 – Subset of variables such that once you’ve given those a suitable assignment (if one exists), the rest of the problem is poly-time solvable
 – Also empirically related to hardness

• But no easy way to find such backbones / backdoors! 😐

A Classification of SAT Algorithms

• **Davis-Putnam (DP)**
 – Based on **resolution**

• **Davis-Logemann-Loveland (DLL/DPLL)**
 – Search-based
 – Basis for current most successful solvers

• **Stalmarck’s algorithm**
 – More of a “breadth first” search, proprietary algorithm

• **Stochastic search**
 – Local search, hill climbing, etc.
 – Unable to prove unsatisfiability (incomplete)
Resolution

- Two CNF clauses that contain a variable x in opposite phases (polarities) imply a new CNF clause that contains all literals except x and x'
 $$(a + b)(a' + c) = (a + b)(a' + c)(b + c)$$
- Why is this true?

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Retain only the newly added clauses and the ones not containing x
- Termination: You either
 - Derive the empty clause (conclude UNSAT)
 - Or all variables have been selected
Resolution Example

How many clauses can you end up with?
(at any iteration)

Next Class

- Quick review of SAT algorithms; how DPLL/DLL algorithm works in current SAT solvers