The Eager Approach to SMT

Sanjit A. Seshia
UC Berkeley

Slides based on ICCAD ’09 Tutorial

Eager Approach to SMT

Input Formula

Satisfiability-preserving Boolean Encoder

Boolean Formula

SAT Solver

Key Ideas:
- Small-domain encoding
 - Constrain model search
- Rewrite rules
- Abstraction-based methods (eager + lazy)

Example Solvers:
UCLID, STP, Spear,
Boolector, Beaver, …
Theories

- Eager Encoding Methods have been demonstrated for the following Theories:
 - Equality & Uninterpreted Functions
 - Integer Linear Arithmetic
 - Restricted Lambda expressions
 - Arrays, memories, etc.
 - Finite-precision Bit-Vector Arithmetic
 - Strings

UCLID Operation

- Operation
 - Series of transformations leading to Boolean formula
 - Each step is validity (satisfiability) preserving
 - Each step performs optimizations

http://uclid.eecs.berkeley.edu
Rewrites: Eliminating Function Applications

- Two applications of an uninterpreted function \(f \) in a formula
- \(f(x_1) \) and \(f(x_2) \)

<table>
<thead>
<tr>
<th>Ackermann's Encoding</th>
<th>Bryant, German, Velev's Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x_1))</td>
<td>(f(x_1))</td>
</tr>
<tr>
<td>(f(x_2))</td>
<td>(f(x_2))</td>
</tr>
<tr>
<td>(x_1 = x_2 \Rightarrow vf_1 = vf_2)</td>
<td>(ITE(x_1 = x_2, vf_1, vf_2))</td>
</tr>
</tbody>
</table>

The Small Model Property

- A Theory is said to have the small-model property if, given a formula \(\phi \), \(\phi \) is satisfiable over the original domain \(D \) iff it is satisfiable over a domain \(S \), where \(S \) is a function of \(\phi \), and \(|S| < |D| \).
- Example: Integer Linear Arithmetic (QF_LIA)
Small-Domain Encoding

- Consider an SMT formula $\phi(x_1, x_2, \ldots, x_n)$ where $x_i \in D_i$

- Small-domain encoding/Finite instantiation: Derive finite set $S_i \subset D_i$ s.t. $|S_i| \ll |D_i|$
 - In some cases, S_i is finite where D_i is infinite

- Encode each x_i to take values only in S_i
 - Could be done by encoding to SAT

Solving QF_LIA is NP-complete

- In NP:
 - If a satisfying solution exists, then one exists within a bound d
 - $\log d$ is polynomial in input size
 - Expression for d [Papadimitriou, '82]
 $$(n+m) \cdot (b_{\text{max}} + 1) \cdot (m \cdot a_{\text{max}})^{2m+3}$$

- Input size:
 - m – # constraints
 - n – # variables
 - b_{max} – largest constant (absolute value)
 - a_{max} – largest coefficient (absolute value)
Small-domain encoding / Finite Instantiation: Naïve approach

- **Steps**
 - Calculate the solution bound d
 - Encode each integer variable with $\lceil \log d \rceil$ bits & translate to Boolean formula
 - Run SAT solver

- **Problem:** For QF_LIA, d is $\Omega(m^m)$
 - $\Omega(m \log m)$ bits per variable

- **Solution:** Exploit special-cases and domain-specific structure

Special Case 1: Equality Logic

- Linear constraints are equalities $x_i = x_j$
- **Result:** $d = n$

$$x_1 \neq x_2 \land x_2 \neq x_3 \land x_1 \neq x_3$$

3-valued domain is needed: $\{1, 2, 3\}$

$$x_1 = x_2 \land x_2 \neq x_3 \land x_1 \neq x_3$$

Can find solution with domain $\{1, 2\}$

[PNueli et al., Information and Computation, 2002]
Special Case 2: Difference Logic

- Boolean combination of difference-bound constraints
 - \(x_i \geq x_j + b, \pm x_i \geq b \)
- Result: \(d = n \cdot (b_{\text{max}} + 1) \)
 [Bryant, Lahiri, Seshia, CAV’02]
- Proof sketch: satisfying solution corresponds to shortest path in constraint graph
 - Longest such path has length \(\leq n \cdot (b_{\text{max}} + 1) \)
- Tighter formula-specific bounds possible

Special Case 3: Generalized 2SAT

- Generalized 2SAT constraints
 - \(x_i + x_j \geq b, -x_i - x_j \geq b, x_i - x_j \geq b, x_i \geq b \)
- \(d = 2 \cdot n \cdot (b_{\text{max}} + 1) \)
 [Seshia, Subramani, Bryant,’04]
Full Integer Linear Arithmetic

- Can we avoid the m^m blow-up?
- In fact, yes. The idea is to derive a new parameterized solution bound d
 - Formalize parameters that the bound really depends on
 - Parameters characterize sparse structure
 - Occurs especially in software verification; also in many high-level hardware models
 - [Seshia & Bryant, LICS’04, LMCS’05]

Structure of Linear Constraints in Software Verification

- Characteristics of studied benchmarks
 - Mostly difference constraints
 - Only 3% of constraints were NOT difference constraints
 - Non-difference constraints are sparse
 - At most 6 variables per constraint (total number of variables in 1000s)
- Some similar observations: Pratt’77, ESC/Java-Simplify-TR’03
Parameterized Solution Bound

- New parameters:
 - k non-difference constraints,
 - w variables per constraint (width)

- Our solution bound:
 \[n \cdot (b_{\text{max}} + 1) \cdot (w \cdot a_{\text{max}})^k \]

Previous:
\[(n+m) \cdot (b_{\text{max}} + 1) \cdot (m \cdot a_{\text{max}})^{2m+3} \]

- Direct dependence on m eliminated (and $k \ll m$)

Example

\[x_1 - x_2 \geq 1 \]
\[x_1 + 2x_2 + x_3 > -3 \]
\[x_2 - x_4 \geq 0 \]

<table>
<thead>
<tr>
<th>m</th>
<th>#constraints</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>#non-difference</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>#variables</td>
<td>4</td>
</tr>
<tr>
<td>w</td>
<td>width</td>
<td>3</td>
</tr>
<tr>
<td>b_{max}</td>
<td>max</td>
<td>3</td>
</tr>
<tr>
<td>a_{max}</td>
<td>max</td>
<td>2</td>
</tr>
</tbody>
</table>

$d = 96$

Previous d = 282,175,488
Summary of d Values

<table>
<thead>
<tr>
<th>Logic</th>
<th>Solution Bound d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality logic</td>
<td>n</td>
</tr>
<tr>
<td>Difference logic</td>
<td>$n \cdot (b_{\text{max}} + 1)$</td>
</tr>
<tr>
<td>Generalized 2SAT logic</td>
<td>$2 \cdot n \cdot (b_{\text{max}} + 1)$</td>
</tr>
<tr>
<td>Full Integer Linear Arithmetic</td>
<td>$n \cdot (b_{\text{max}} + 1) \cdot (a_{\text{max}}^k \cdot w^k)$</td>
</tr>
</tbody>
</table>

Proof of Our Bound: Steps

1. Previous result for integer linear programming (ILP)
 - by Borosh-Treybig-Flahive [76, 86]

2. Express above result in k and w, in addition to other parameters

3. Derive QFP bound from ILP bound
Integer Linear Programming (ILP)

Notation

\[Ax = b, \quad x \geq 0 \]

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\cdot
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}
\]

\[a_{\text{max}} = \max_{ij} |a_{ij}| \quad b_{\text{max}} = \max_i |b_i| \]

Borosh-Treybig-Flahive Result [1986]

- Solution bound \(d \) is
 \[(n+2) \cdot \Delta \]
 where \(\Delta = \text{largest sub-determinant of } [A \mid b] \text{ (abs. value)} \)

- Problem: Exponentially many sub-determinants!
Matrix Structure

\[w \text{ non-zeroes per row} \]

\[k \]

\[m \]

\[n \]

Non-difference constraints

\[k = 0 \]: Only Difference Constraints

\[x_i - x_j \geq b, \pm x_i \geq b \]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & b_1 \\
0 & 1 & -1 & 0 & 0 & b_2 \\
0 & 0 & -1 & 0 & 1 & b_3 \\
-1 & 0 & 0 & 1 & 0 & b_4 \\
0 & 1 & 0 & 0 & -1 & b_5 \\
\end{bmatrix}
\]

Totally Unimodular: All subdeterminants are in \{0, -1, +1\}

\[\Delta \leq \sum_i |b_i| \leq \min(n+1, m) \cdot b_{\text{max}} \]
Arbitrary k

Each term $\leq a_{\text{max}}^k$

$\#\text{Terms} \leq w^k$

$$\Delta \leq \sum |b_i| (a_{\text{max}}^k \cdot w^k)$$

$$\leq \min(n+1, m) \cdot b_{\text{max}} \cdot (a_{\text{max}}^k \cdot w^k)$$

Bound for ILP

- $\Delta \leq \min(n+1, m) \cdot b_{\text{max}} \cdot (a_{\text{max}}^k \cdot w^k)$

- $d = (n+2) \cdot \Delta$
 [Borosh-Treybig-Flahive]
 $$= (n+2) \cdot \min(n+1, m) \cdot b_{\text{max}} \cdot (a_{\text{max}}^k \cdot w^k)$$
 $$\leq (n+2) \cdot n \cdot b_{\text{max}} \cdot (a_{\text{max}}^k \cdot w^k)$$
 (assuming $m \leq n$)
QFP Bound from ILP Bound

- Consider DNF of arbitrary QFP formula ϕ
 $$\phi = \phi_1 \lor \phi_2 \lor \ldots \lor \phi_N$$

- Satisfying assignment to ϕ must satisfy some ϕ_i

- Each ϕ_i is an ILP
 - Parameters of ϕ_i are bounded by those of ϕ

- Therefore: $d = (n+2) \cdot n \cdot b_{\text{max}} \cdot (a_{\text{max}}^k \cdot w^k)$

Summary of d Values

<table>
<thead>
<tr>
<th>Logic</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality logic</td>
<td>n</td>
</tr>
<tr>
<td>Separation logic</td>
<td>$n \cdot (b_{\text{max}} + 1)$</td>
</tr>
<tr>
<td>Generalized 2SAT logic</td>
<td>$2 \cdot n \cdot (b_{\text{max}} + 1)$</td>
</tr>
<tr>
<td>Quantifier-Free Presburger logic</td>
<td>$(n+2) \cdot n \cdot (b_{\text{max}} + 1) \cdot (a_{\text{max}}^k \cdot w^k)$</td>
</tr>
</tbody>
</table>

Note: A paper by Sergei Veselov proved that the bound of Borosh-Treybig-Flahive has been improved from $(n+2) \cdot \Delta$ to simply Δ. This eliminates the $(n+2)$ term from the last entry in the table above.
Abstraction-Based Methods

- For some logics, one cannot easily compute a closed-form expression for the small domain
- **Example:** Bit-Vector Arithmetic
- In such cases, an abstraction-refinement approach can be used to compute formula-specific small domains

Bit-Vector Arithmetic: Some History

- **B.C. (Before Chaff)**
 - String operations (concatenate, field extraction)
 - Linear arithmetic with bounds checking
 - Modular arithmetic
- **SAT-Based “Bit Blasting”**
 - Generate Boolean circuit based on bit-level behavior of operations
 - Handles arbitrary operations
 - Check with best available SAT solver
 - Effective in many applications
 - CBMC [Clarke, Kroening, Lerda, TACAS ’04]
 - Microsoft Cogent + SLAM [Cook, Kroening, Sharygina, CAV ’05]
Research Challenge

• *Is there a better way than bit blasting?*

• **Requirements**
 – Provide same functionality as with bit blasting
 • Must support all bit-vector operators
 – Exploit word-level structure
 – Improve on performance of bit blasting

• **Current Approaches based on two core ideas:**
 1. **Simplification:** Simplify input formula using word-level rewrite rules and solvers
 2. **Abstraction:** Can use automatic abstraction-refinement to solve simplified formula

Bit-Vector SMT Solvers, circa Spr.’2009

Current Techniques with Sample Tools

– *Proof-based abstraction-refinement* – **UCLID** [Bryant et al., TACAS ’07]
– *Solver for linear modular arithmetic* to simplify the formula – **STP** [Ganesh & Dill, CAV’07]
– *Automatic parameter tuning for SAT* – **Spear** [Hutter et al., FMCAD ’07]
– *Rewrites, underapproximation, efficient SAT engine* – **Boolector** [Brummayer & Biere, TACAS’09]
– *Equality/constant propagation, logic optimization, special rules for non-linear ops* - **Beaver** [Jha et al., CAV’09]
– *DPLL(T) framework: Layered approach, rewriting* – **CVC3** [Barrett et al.], **MathSAT** [Bruttomesso et al.], **Yices** [Dutertre et al.], **Z3** [de Moura et al.]
Abstraction-Refinement

- Deciding Bit-Vector Arithmetic with Abstraction [Bryant et al., TACAS ’07, STTT ’09]
 - Use bit blasting as core technique
 - Apply to simplified versions of formula: under and over approximations
 - Generate successive approximations until a solution is found or formula shown unsatisfiable
 - Inspired by McMillan & Amla’s proof-based abstraction for finite-state model checking
- Small Motivating Example:
 \[(x + y \neq y + x) \land (x \cdot y \neq y \cdot x)\]
 - Sufficient to prove the left-hand conjunct unsat

Approximations to Formula

- Overapproximation \(\varphi^+\)
 - \(\varphi \Rightarrow \varphi^+\)
 - More solutions: If unsatisfiable, then so is \(\varphi\)

- Original Formula \(\varphi\)

- Underapproximation \(\varphi^-\)
 - \(\varphi^- \Rightarrow \varphi\)
 - Fewer solutions: Satisfying solution also satisfies \(\varphi\)

- Example Approximation Techniques
 - Underapproximating
 - Restrict word-level variables to smaller ranges of values
 - Overapproximating
 - Replace subformula with Boolean variable
Starting Iterations

- Initial Underapproximation
 - (Greatly) restrict ranges of word-level variables
 - Intuition: Satisfiable formula often has small-domain solution

First Half of Iteration

- SAT Result for φ_1^-
 - Satisfiable
 - Then have found solution for φ
 - Unsatisfiable
 - Use UNSAT proof to generate overapproximation φ_1^+
Second Half of Iteration

- SAT Result for φ_1^+
 - Unsatisfiable: then have shown φ unsatisfiable
 - Satisfiable: solution indicates variable ranges that must be expanded
- Generate refined underapproximation

Example

$\varphi_1^+ := (x = y+2)$

$\varphi := (x = y+2) \land (x^2 > y^2)$

$\varphi_2^- := (x_{[2]} = y_{[2]} + 2) \land (x_{[2]}^2 > y_{[2]}^2)$

$\varphi_1^- := (x_{[1]} = y_{[1]} + 2) \land (x_{[1]}^2 > y_{[1]}^2)$

SAT: $x = 2, y = 0$

SAT: done.

UNSAT: Look at proof
Iterative Behavior

- **Underapproximations**
 - Successively more precise abstractions of φ
 - Allow wider variable ranges
- **Overapproximations**
 - No predictable relation
 - UNSAT proof not unique

Overall Effect

- **Soundness**
 - Only terminate with solution on underapproximation
 - Only terminate as UNSAT on overapproximation
- **Completeness**
 - Successive underapproximations approach φ
 - Finite variable ranges guarantee termination
 - In worst case, get $\varphi_k^- = \varphi$
Summary of Key Ideas

Summary of Ideas: Lazy Methods

- Philosophy: Extend DPLL framework from SAT to SMT
- Literals assigned by SAT are sent to Theory Solver
- Theory Solver determines if literals are satisfiable in the theory
- Key optimizations: small explanations, early conflict detection, theory propagation
Summary of Ideas: Eager Methods

- Philosophy: Constrain solution space with theory-specific solution bounds
- Small-domain encoding
 - Compute bounds that work for any formula in the logic
- Abstraction-refinement of domains
 - Compute formula-specific small domains
- Rewrite rules: high level and bit level
 - Simplify formula before and after bit-blasting

Challenges and Opportunities

- Solvers for new theories
 - Strings
 - Non-linear arithmetic
 - Can we exploit domain-specific structure?
- Parallel SMT
- Better support for quantifiers
- Better proof/interpolant generation