EECS 219C: Computer-Aided Verification
Symbolic Model Checking
Part I

Sanjit A. Seshia
EECS, UC Berkeley

Announcement

• Extra lecture on Friday, 11 am – 12:30 pm in 540 Cory
Today’s Lecture

Symbolic model checking with BDDs

Manipulate sets (of states and transitions) rather than individual elements and represent sets as Boolean formulas

Represent Boolean formulas as BDDs

Today’s Lecture

• Symbolic model checking
 – Basics of symbolic representation
 – Quantified Boolean formulas (QBF)
 – Checking $G\ p$
 – Fixpoint theory
 – Checking CTL properties
Sets as Boolean functions

- Every finite set can be represented as a Boolean function
 - Suppose the set has \(N > 0 \) elements
 - Each element is encoded as a string of at least \(\lceil \log N \rceil \) bits
 - Characteristic Boolean function is the one whose ON-set (satisfying assignments) are those strings
 - Empty set is “False”

Set Operations as Boolean Operations

- \(A \cup B = ? \)
- \(A \cap B = ? \)
- \(A \subset B = ? \)
- Is \(A \) empty?
Sets of states and transitions

• Set of states \rightarrow each state s is bit-string comprising values of state variables

• Set of transitions \rightarrow
 – Transition is a state pair (s, s')
 – View the pair as a combined bit-string

• From now, we will view the set of states S and the transition relation R as Boolean formulas over vector of current state variables v and next state variables v'
 – $S(v)$, $R(v, v')$

Quantified Boolean Formulas

• Let F denote a Boolean formula, and v denote one or more Boolean variables

• A quantified Boolean formula ϕ is obtained as:
 $\phi ::= F \mid \exists v \phi \mid \forall v \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi$

• How do you express $\exists v_i \phi$ and $\forall v_i \phi$ in terms of ϕ’s cofactors and standard Boolean operators?
Symbolic Model Checking $G\ p$

- Given: Set of initial states S_0, transition relation R
- Check property $G\ p$ (or $AG\ p$)
- How symbolic model checking will do this:
 - Compute S_0, S_1, S_2, \ldots where S_i is the set of
 states reachable from some initial state in at most i steps
 - What kind of search is this: DFS or BFS?
 - When do we stop?
 - After computing each S_i, check whether any
 element of S_i satisfies $\neg\ p$ [How?]
 - How do we generate a counterexample?

Reachability Analysis

- The process of computing the set of states
 reachable from some initial state in 0 or more steps
 - Often characterized as checking ($AG\ true$)
 - The resulting set is called “reachable set” or “set of
 reachable states”
 - This is the “strongest invariant” of the system \rightarrow
 WHY? What is a “system invariant”?
Implementing Reachability Analysis

• How is S_i related to S_{i+1}?
 – In words
 – As a recurrence relation using QBF

• $v \in S_{i+1}$ iff $v \in S_i$ or there is a state $x \in S_i$ such that $R(x, v)$

• $S_{i+1}(v) = S_i(v) \lor \exists x \{ S_i(x) \land R(x,v) \}$
Implementing Reachability Analysis

• How is S_i related to S_{i+1}?
• $v \in S_{i+1}$ iff $v \in S_i$ or there is a state $x \in S_i$ such that $R(x, v)$
• $S_{i+1}(v) = S_i(v) \lor \exists x \{ S_i(x) \land R(x, v) \}$
• $S_{i+1}(v) = S_i(v) \lor (\exists v \{ S_i(v) \land R(v, v') \}) [v/v']$
 – $F[x/y]$ means that we substitute x for y in F

```
i := 0;
do {
  i++;
  $S_i(v) = S_{i-1}(v) \lor (\exists v \{ S_{i-1}(v) \land R(v, v') \}) [v/v']$
} while ($S_i(v) \neq S_{i-1}(v)$)
S_i(v) is the set of reachable states
```
BDD Issues

• Remember that S_i and R are represented as BDDs
• How large they grow determines the space and time usage of the algorithm

Backwards Reachability

• Suppose we want to verify $G p$
• The formula $\neg p$ characterizes all error states
• We can search backwards for a path to an error state from some initial state
 – Compute E_0, E_1, E_2, … as states reachable from the error states in at most 0, 1, 2, … steps
 – $E_0 = \neg p$
 – How to express E_{i+1} in terms of E_i?
• Why would we want to do backwards reachability analysis? Is it always better?
Verification of G p

• Corresponding CTL formula is AGp
• with Forward Reachability Analysis:
 – Check if some $S_i \land \neg p$ is true
• with Backward Reachability Analysis:
 – Set $E_0 = \neg p$
 – Check if $E_k \land S_0$ is true for any k

Symbolic Model Checking, General Case

• We will consider properties in CTL
 – As implemented in the original SMV model checker
 – Later we will see how LTL properties can be verified using symbolic techniques
Model Checking Arbitrary CTL

- Need only consider the following types of CTL properties:
 - $E \times p$
 - $E \; G \; p$
 - $E \; (\; p \; U \; q \;)$

- Why? \Leftarrow all others are expressible using above
 - $A \; G \; p = ?$
 - $A \; G \; (\; p \; \Rightarrow \; (\; A \; F \; q \;) \;) = ?$

Fixpoint (Fixed point)

- Let Σ be a set, and $\Sigma' \subseteq \Sigma$
 - In model checking, $\Sigma = \text{True}$
- Let $\tau : P(\Sigma) \rightarrow P(\Sigma)$
- Definition: Σ' is a fixpoint of τ if $\tau(\Sigma') = \Sigma'$
Example

• What’s an example of a fixpoint we’ve seen already? What was τ?
 – A G true can be computed using a fixpoint formulation
 – τ computes the “next state”
• What we need: a way to generalize this for arbitrary CTL properties: EX, EG, EU
 – Fixpoint theory helps us do this
More Definitions

• τ is **monotonic** if for $P \subseteq Q$, $\tau(P) \subseteq \tau(Q)$

• τ is **∪-continuous** if: $P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i)$

• τ is **∩-continuous** if: $P_1 \supseteq P_2 \supseteq P_3 \ldots \Rightarrow \tau(\bigcap_i P_i) = \bigcap_i \tau(P_i)$

Main Theorems (Tarski)

• τ is **monotonic** if for $P \subseteq Q$, $\tau(P) \subseteq \tau(Q)$

• τ is **∪-continuous** if: $P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\bigcup_i P_i) = \bigcup_i \tau(P_i)$

• τ is **∩-continuous** if: $P_1 \supseteq P_2 \supseteq P_3 \ldots \Rightarrow \tau(\bigcap_i P_i) = \bigcap_i \tau(P_i)$

• A monotonic τ on $P(\Sigma)$ always has
 – a least fixpoint: written μ Z. $\tau(Z)$
 – a greatest fixpoint: written ν Z. $\tau(Z)$
Main Theorems (Tarski)

• τ is **monotonic** if for P ⊆ Q, τ(P) ⊆ τ(Q)
• τ is **∪-continuous** if: P₁ ⊆ P₂ ⊆ P₃ ... \(\Rightarrow\) \(τ(∪_i P_i) = ∪_i τ(P_i)\)
• τ is **∩-continuous** if: P₁ ⊇ P₂ ⊇ P₃ ... \(\Rightarrow\) \(τ(∩_i P_i) = ∩_i τ(P_i)\)

• A monotonic τ on \(P(\Sigma)\) always has
 – a least fixpoint: written \(µ Z. \tau(Z)\)
 – a greatest fixpoint: written \(ν Z. \tau(Z)\)
 – \(µ Z. \tau(Z) = ∩ \{Z | τ(Z) ⊆ Z\}\)
 – \(ν Z. \tau(Z) = ∪ \{Z | τ(Z) ⊇ Z\}\)

Main Theorems (Tarski)

• τ is **monotonic** if for P ⊆ Q, τ(P) ⊆ τ(Q)
• τ is **∪-continuous** if: P₁ ⊆ P₂ ⊆ P₃ ... \(\Rightarrow\) \(τ(∪_i P_i) = ∪_i τ(P_i)\)
• τ is **∩-continuous** if: P₁ ⊇ P₂ ⊇ P₃ ... \(\Rightarrow\) \(τ(∩_i P_i) = ∩_i τ(P_i)\)
• A monotonic τ on \(P(\Sigma)\) always has
 – a least fixpoint: written \(µ Z. \tau(Z)\)
 – a greatest fixpoint: written \(ν Z. \tau(Z)\)
 – \(µ Z. \tau(Z) = ∩ \{Z | τ(Z) ⊆ Z\}\)
 – \(ν Z. \tau(Z) = ∪ \{Z | τ(Z) ⊇ Z\}\)
 – \(µ Z. \tau(Z) = ∪_i τ(φ)\) when τ is **∪-continuous**
 – \(ν Z. \tau(Z) = ∩_i τ(Σ)\) when τ is **∩-continuous**
Main Lemma for us

• If Σ is finite and τ is monotonic, then τ is also \cup-continuous and \cap-continuous
• Proof? (of \cup-continuous)
 τ is \cup-continuous if: $P_1 \subseteq P_2 \subseteq P_3 \ldots \Rightarrow \tau(\cup_i P_i) = \cup_i \tau(P_i)$

What’s Left?

• We have the needed fixpoint theory
• Now all we need to do is formulate the result of CTL operators as fixpoints
 – We will identify a CTL formula with the set of states that satisfy that formula
 • Remember that CTL formulas start with A or E which are interpreted over states, not runs
CTL Results as Fixpoints

- $A\ G\ p = \nu\ Z.\ p \land AX\ Z$
 - $\tau(Z) = p \land AX\ Z$
 - Given a point (state) in Z, τ maps it to another state that
 - Satisfies p
 - Can reach a state in Z along any execution path in one step
 - So what happens when we reach τ’s fixpoint?
 - Remember: ν fixpoint computation starts with the universal set Σ and works ‘downward’

Other Fixpoint Formulations

- $AF\ p = \mu\ Z.\ p \lor AX\ Z$
- $EG\ p = \nu\ Z.\ p \land EX\ Z$
- $E(p\ U\ q) = \mu\ Z.\ q \lor (p \land EX\ Z)$

- Intuitively:
 - Eventualities \rightarrow least fixpoints
 - Always/Forever \rightarrow greatest fixpoints
Model Checking CTL Properties

- We define a general recursive procedure called “Check” to do the fixpoint computations.

- Definition of Check:
 - Input: A CTL property Π (and implicitly, R)
 - Output: A Boolean formula B representing the set of states satisfying Π

- If $S_0(v) \rightarrow B(v)$, then Π is true

The “Check” procedure

Cases:
- If Π is a Boolean formula, then Check(Π) = Π
- Else:
 - $\Pi = \text{EX } p$, then Check(Π) = CheckEX(Check(p))
 - $\Pi = E(p U q)$, then
 Check(Π) = CheckEU(Check(p), Check(q))
 - $\Pi = E G p$, then Check(Π) = CheckEG(Check(p))

- Note: What are the arguments to CheckEX, CheckEU, CheckEG? CTL properties or Boolean formulas?
CheckEX

• CheckEX(p) returns a set of states such that p is true in their next states

• How to write this?

CheckEU

• CheckEU(p, q) returns a set of states, each of which is such that
 – Either q is true in that state
 – Or p is true in that state and you can get from it to a state in which p U q is true
CheckEU

- CheckEU(p, q) returns a set of states, each of which is such that
 - Either q is true in that state
 - Or p is true in that state and you can get from it to a state in which p U q is true

- Let Z\(_0\) be our initial approximation to the answer to CheckEU(p, q)

\[Z_k(v) = \{ q(v) + [p(v) \cdot \exists v' \{ R(v, v') \cdot Z_{k-1}(v') \}] \} \]

- What’s Z\(_0\)? Why will this terminate?

Summary

- EGp computed similarly

- Definition of Check:
 - Input: A CTL property \(\Pi \) (and implicitly, \(R \))
 - Output: A Boolean formula B representing the set of states satisfying \(\Pi \)

- All Boolean formulas represented “symbolically” as BDDs
 - “Symbolic Model Checking”
Next class

• More on symbolic model checking
• Start topics on “abstraction”