Announcements

• HW 1 due on Wednesday
• Make-up class on Friday, 2/23
 – 540 Cory
 – 11 am - 12:30 pm
• Project topics due tonight
 – proposals due Feb. 21
Today’s Lecture

• Recap of Models, Temporal Logic
 – Temporal logic and Automata
• Explicit-state model checking
 – Search algorithms: DFS, BFS
 – Verifying safety and liveness
 – Optimizations

Recap

• Models
 – Closed systems
 – Kripke structures \((S, S_0, R, L)\)
 • \(L\) is a labeling function, mapping a state to a set of atomic propositions (Boolean formulas) true in that state
• Properties
 – Temporal logic (LTL, CTL)
More on Models

- Typically the overall system is specified as a set of modules, and the environment
 - Assume we have a Kripke structure for each
- There are two ways of constructing the overall Kripke structure
 - Synchronous composition
 - Asynchronous composition

Synchronous Product

- Given two Kripke structures
 - $M_1 = (S_1, s_{10}, R_1, L_1)$
 - $M_2 = (S_2, s_{20}, R_2, L_2)$
- Sync. Product is $M = (S, s_0, R, L)$
 - $S \subseteq S_1 \times S_2$
 - $s_0 = (s_{10}, s_{20})$
 - $R = R_1 \land R_2$
 - $L(s_1, s_2) = (L_1(s_1), L_2(s_2))$
Asynchronous Product

• Given two Kripke structures
 – $M_1 = (S_1, s_{10}, R_1, L_1)$
 – $M_2 = (S_2, s_{20}, R_2, L_2)$
• Async. Product is $M = (S, s_0, R, L)$
 – $S \subseteq S_1 \times S_2$
 – $s_0 = (s_{10}, s_{20})$
 – $R(s) = (R_1(s_{1}, s_{1}') \land s_{2}' = s_{2})$
 $\lor (R_2(s_{2}, s_{2}') \land s_{1}' = s_{1})$
 – $L(s_1, s_2) = (L_1(s_1), L_2(s_2))$

Some Remarks on Temporal Logic

• The vast majority of properties are safety properties
• Liveness properties are useful abstractions of more complicated safety properties (such as real-time response constraints)
Deadlock

- An oft-cited property, especially people building distributed / concurrent systems
- Can you express it in terms of
 - a property of the state graph?
 - a CTL property?
 - a LTL property?

Next

- Connections between temporal logic and automata
Mental Picture

System \rightarrow trace \rightarrow Automaton “checking that trace is correct”

Automata from Kripke Structures

- Recall: Trace is a sequence of the observable parts of states (labels)
- Each label is a set of atomic propositions, but can be thought of as a symbol in an alphabet
 - Alphabet is 2^{AP}, where AP is set of atomic propositions
- Now we can talk about automata that accept traces
Recap: Automata over Finite Traces

- Just your regular finite automaton with an accepting state
 - All finite traces (words) that take the automaton into the accepting state are “in its language”
- But behaviors (and traces) are infinite length
 - So we need a new notion of acceptance

Automata over Infinite Traces

- What does “Accept” mean?
 - Certain states of the automaton are called “accepting states”
 - At least one accepting state must be visited infinitely often
- Such automata are called Büchi automata
 - Also Omega-automata (written ω-automata)
From Temporal Logic to Automata

- Properties are often specified as automata
- A (Buchi) automaton corresponding to a temporal logic formula ϕ accepts exactly those traces that satisfy ϕ
Automaton for $F \ p$

Start

$! \ p$

$! \ p$

$! \ p$

p

p

$\text{Seen } p$

Automaton for GFp

Start

$! \ p$

$! \ p$

$! \ p$

p

p

$\text{Seen } p$
From LTL to Automata

- Any LTL formula can be translated to a corresponding automaton
- There are many translation algorithms
 - We won’t do any in class
- How about the other way around?
 - Can an arbitrary Buchi automaton be translated into an LTL formula?

Automaton without LTL counterpart

Automata are more expressive than LTL

What traces does the automaton below accept?

\[\text{Claim: This cannot be expressed in LTL.} \]

(How about \(a \land G (a \Rightarrow X X a) \) ?)
On to Model Checking …

Finite-State Model Checking

Temporal logic: $G(p \rightarrow X q)$

Model Checker

Yes, property satisfied

System description
(RTL, source code, gates, etc.)
Explicit-State Model Checking

- Model checking exhaustively enumerates the states of the system
- State space can be viewed as a graph
- Explicit-state model checking
 - Explicitly enumerates each state and traverses each edge of the graph
- We will focus on explicit-state techniques as used in SPIN [G. Holzmann, won ACM Software Systems Award]

Issues with Explicit-State MC

- The graph is usually HUGE (> 10^6 nodes)
 - So can't compute it a-priori
- But we are given an initial state (s_0) and a way of going from state to state (transition relation R)
 - In particular, we'll assume that R is specified as a "set of actions", each having a "enabling condition" and a "set of assignments" that cause a state change
Model Checking $G\ p$

- Consider the simplest property $G\ p$
 - p is a system invariant to be satisfied by all states
- Given the state graph, how can we check this?

Model Checking $G\ p$

- Consider the simplest property $G\ p$
 - p is a system invariant to be satisfied by all states
- Given the state graph, how can we check this?
 - Graph traversal: DFS or BFS
Depth-First Search (DFS)

Maintain 2 data structures:
1. Set of visited states
2. Stack with current path from the initial state

Potential problems?

Generating counterexamples

If the DFS algorithm finds an “error” state (in which p is not satisfied), how can we generate a counterexample trace from the initial state to that state?
Generating counterexamples

If the DFS algorithm finds an “error” state (in which p is not satisfied), how can we generate a counterexample trace from the initial state to that state?

Will this be the shortest counterexample?

Stack:

DFS without State Set

- Only keep track of current stack
- No set of states to maintain
 - Each time you visit a state, check whether it’s on the stack
 - If so, don’t explore its edges
 - If not, do.
- Q1: Will this terminate?
- Q2: If yes: on state graph with n states, how long will it take?
Bounded Model Checking with DFS

- Same as the original DFS, except that you only allow your stack to grow up to B elements deep
 - Keep track of set of all visited states and explore a state only if it is not in this set
- If this returns “no error within B steps from initial state”, can you trust it?

- NO! Example on next slide
Example

Solution: For each state, keep track of the least stack depth with which it was visited.

Bound, B = 3

Breadth-First Search

- Visit states in order of distance from initial state
- Uses queue, No stack: how to generate counterexamples?
- Are the generated counterexamples the shortest?
Comparing DFS and BFS for Gp

• Pros of BFS over DFS
 – Shortest counterexample generated

• Cons of BFS
 – Need to store back-pointers to predecessor with each state in the state space representation (increased memory requirement)
 – Does not efficiently extend to liveness properties
 • Need to do cycle detection

What about non-Gp safety properties?

• Recall: safety properties \rightarrow finite counterexample trace

• So we can construct a monitor automaton with an “error” state that must be avoided
 – Construct product of that automaton with original system
 – Error state of product has “error” in the component corresponding to the monitor