EECS 219C: Computer-Aided Verification
Models and Properties: Temporal Logic

Sanjit A. Seshia
EECS, UC Berkeley

Announcements

- Project topics due by e-mail to me next Monday
 - Include a short 1 paragraph description of the project
Finite-State Model Checking

\[G(p \rightarrow X q) \]

Temporal logic

FSM

\[\text{Model Checker} \]

Yes, property satisfied

System description
(RTL, source code, gates, etc.)

Recap

- We’re verifying closed systems
- Modeled as Kripke structures \((S, S_0, R, L)\)
 - Represents the product of the “system” with its “environment”
System Behavior

- A sequence of states, starting with an initial state
 \[- s_0 \ s_1 \ s_2 \ \ldots \ \text{such that } R(s_i, s_{i+1}) \text{ is true} \]
- Also called “run”, or “(computation) path”
- Trace: sequence of observable parts of states
 \[- \text{Sequence of state labels} \]

Safety vs. Liveness

- Safety property
 \[- \text{Error trace is finite} \]
- Liveness property
 \[- \text{Error trace is infinite} \]
Temporal Logic

- A logic for specifying properties over time
 - E.g., Behavior of a finite-state system

- We will study *propositional* temporal logic
 - Other temporal logics exist:
 - E.g., real-time temporal logic

Atomic State Property (Label)

A Boolean formula over state variables

We will denote each unique Boolean formula by
- a distinct color
- a name such as p, q, ...

req
req & !ack
Globally (Always) p: $G \ p$

$G \ p$ is true for a computation path if p holds at all states (points of time) along the path.

Suppose $G \ p$ holds along the path below:

$$p = \bullet$$

Eventually p: $F \ p$

- $F \ p$ is true for a path if p holds at some state along that path.

Does $F \ p$ hold for the following examples?

$$p = \bullet$$
Next \(p: X \ p \)

- \(X \ p \) is true along a path starting in state \(s_i \) (suffix of the main path) if \(p \) holds in the next state \(s_{i+1} \)

\[p = \bullet \]

Suppose \(X \ p \) holds along the path starting at state \(s_2 \)

Nesting of Formulas

- \(p \) need not be just a Boolean formula.
- It can be a temporal logic formula itself!

\[p = \bullet \]

"\(X \ p \) holds for all suffixes of a path"

How do we draw this?

How can we write this in temporal logic?

Write down formal definitions of \(Gp, Fp, Xp \)
Notation

• Sometimes you’ll see alternative notation in the literature:
 \(G \square \)
 \(F \lozenge \)
 \(X \circ \)

Examples: What do they mean?

• \(G F p \)
• \(F G p \)
• \(G(p \rightarrow F q) \)
• \(F(p \rightarrow (X X q)) \)
p Until q: p U q

- **p U q** is true along a path starting at s if
 - q is true in some state reachable from s
 - p is true in all states from s until q holds

 \[p = \text{red} \quad q = \text{cyan} \]

Suppose p U q holds for the path below

\[0 \quad 1 \quad 2 \quad \ldots \]

Temporal Operators & Relationships

- G, F, X, U: All express properties along paths

- Can you express G p purely in terms of F, p, and Boolean operators?

- How about G and F in terms of U and Boolean operators?

- What about X in terms of G, F, U, and Boolean operators?
Examples in Temporal Logic

1. “No more than one processor (in a 2-processor system) should have a cache line in write mode”
 - $\text{wr}_1 / \text{wr}_2$ are respectively true if processor 1 / 2 has the line in write mode

2. “The grant signal must be asserted at some time after the request signal is asserted”
 - Signals: grant, req

3. “A request signal must receive an acknowledge and the request should stay asserted until the acknowledge signal is received”
 - Signals: req, ack

Examples in Temporal Logic

4. “From any state, it is possible to return to the reset state along some execution”
 - Signal indicating reset state: reset

5. “The grant signal must always be asserted 3 cycles after the request signal is asserted”
 - Signals: grant, req
Linear Temporal Logic

• What we’ve seen so far are properties expressed over a single computation path or run
 – LTL

Temporal Logic Flavors

• Linear Temporal Logic

• Computation Tree Logic
 – Properties expressed over a tree of all possible executions
 – Where does this “tree” come from?
Temporal Logic Flavors

- Linear Temporal Logic (LTL)

- Computation Tree Logic (CTL, CTL*)
 - Properties expressed over a tree of all possible executions
 - CTL* gives more expressiveness than LTL
 - CTL is a subset of CTL* that is easier to verify than arbitrary CTL*
Computation Tree Logic (CTL*)

- Introduce two new operators \mathbf{A} and \mathbf{E} called “Path quantifiers”
 - Corresponding properties hold in states (not paths)
 - $\mathbf{A} p$: Property p holds along all computation paths starting from the state where $\mathbf{A} p$ holds
 - $\mathbf{E} p$: Property p holds along at least one path starting from the state where $\mathbf{E} p$ holds
- Example:
 “The grant signal must always be asserted some time after the request signal is asserted”
 $\mathbf{A} G (\text{req} \rightarrow \mathbf{A} F \text{grant})$

- Notation: \mathbf{A} sometimes written as \forall, \mathbf{E} as \exists

CTL

- Every \mathbf{F}, \mathbf{G}, \mathbf{X}, \mathbf{U} must be immediately preceded by either an \mathbf{A} or a \mathbf{E}
 - E.g., Can’t write \mathbf{A} ($\mathbf{F} \mathbf{G} p$)

- LTL is just like having an “\mathbf{A}” on the outside
Why CTL?

- Verifying LTL properties turns out to be computationally harder than CTL
- But LTL is more intuitive to write
- Complexity of model checking
 - Exponential in the size of the LTL expression
 - Linear for CTL
- For both, model checking is linear in the size of the state graph

CTL as a way to approximate LTL

- \(\text{AG EF } p \) is weaker than \(\text{GF } p \)
 \[\text{Good for finding bugs...} \]
- \(\text{AF AG } p \) is stronger than \(\text{FG } p \)
 \[\text{Good for verifying correctness...} \]

Why? And what good is this approximation?
More CTL

• “From any state, it is possible to get to the reset state along some path”

\[A \forall G (E F \text{ reset}) \]

CTL vs. LTL Summary

• Have different expressive powers

• Overall: LTL is easier for people to understand, hence more commonly used in property specification languages
From Temporal Logic to Monitors

• A monitor for a temporal logic formula
 – is a finite state machine (automaton)
 – Accepts exactly those behaviors that satisfy the temporal logic formula
 • “Accepts” means that the accepting state is visited infinitely often
• Properties are often specified as automata

Monitor for $\text{G } p$, p a Boolean formula
Monitor for $F\ p$, p a Boolean formula?

Monitor for $GF\ p$, p a Boolean formula?
Summary

• What we did today: Properties in Temporal Logic, LTL, CTL, CTL*
• Next: Start model checking algorithms