Boolean Functions (Formulas) and Propositional Logic

- Variables: $x_1, x_2, x_3, \ldots, x_n \in \{0, 1\}$ (or true, false)
- $F(x_1, x_2, x_3, \ldots, x_n) \in \{0, 1\}$
- F representable as the output (root) of a circuit (expression DAG) constructed with gates (Boolean operators)
 - Standard Boolean operators:
 - And (\land, ·), Or (\lor, +), Not (\neg, ')
 - Derived operators: Implies (\rightarrow) Iff (\iff)
The Boolean Satisfiability Problem (SAT)

- Given:
 A Boolean formula $F(x_1, x_2, x_3, \ldots, x_n)$

- Check if F can ever be true (satisfiable)
 - If so, return values to x_i's (satisfying assignment) that make F true

Why is SAT important?

- Theoretical importance:
 - First NP-complete problem (Cook, 1971)

- Many practical applications:
 - Model Checking
 - Automatic Test Pattern Generation
 - Combinational Equivalence Checking
 - Planning in AI
 - Automated Theorem Proving
 - Software Verification
 - …
Terminology

• Literal

• Clause

• Conjunctive Normal Form (CNF)

• Disjunctive Normal Form (DNF)

• Tautology
 – Complexity of tautology checking for propositional logic?

An Example

• Inputs to SAT solvers are usually represented in CNF

 \((a + b + c) (a' + b' + c) (a + b' + c') (a' + b + c')\)
An Example

- Inputs to SAT solvers are usually represented in CNF

\[(a + b + c) (a' + b' + c) (a + b' + c') (a' + b + c')\]

Why CNF?
Why CNF?

• Input-related reason
 – Can transform from circuit to CNF in linear time & space (HOW?)
• Solver-related: Most SAT solver variants can exploit CNF
 – Easy to detect a conflict
 – Easy to remember partial assignments that don’t work (just add ‘conflict’ clauses)
 – Other “ease of representation” points?
• Any reasons why CNF might NOT be a good choice?

Complexity Issues

• **k-SAT**: A SAT problem with input in CNF with at most k literals in each clause
• Complexity for non-trivial values of k:
 – 2-SAT: ?
 – 3-SAT: ?
 – > 3-SAT: ?
2-SAT Algorithm

- Linear-time algorithm (Aspvall, Plass, Tarjan, 1979)
 - Think of clauses as implications
 - Think of a graph with literals as nodes

3-SAT: Complexity Bounds (circa 2005)

- Obvious upper bound on run-time?
- Best known deterministic upper bound
 \[1.473^n \]
- Best known randomized upper bound
 \[1.324^n \]
- Best known lower bound
 \[n^{2.761} \]
Beyond Worst-Case Complexity

- What we really care about is “typical-case” complexity
- But how can one measure “typical-case”?
- Two approaches:
 - Is your problem a restricted form of 3-SAT? That might be polynomial-time solvable
 - Experiment with (random) SAT instances and see how the solver run-time varies with formula parameters (#vars, #clauses, …)
Special Cases of 3-SAT

• You already know one: 2-SAT
 – T. Larrabee observed that many clauses in ATPG tend to be 2-CNF
• Another useful class: Horn-SAT
 – A clause is a Horn clause if at most one literal is positive
 – If all clauses are Horn, then problem is Horn-SAT
 – E.g. Application:- Simulation checking between 2 finite-state systems

Horn-SAT

• Can we solve Horn-SAT in polynomial time? How?
 – Hint: view clauses as implications.

• Variants:
 – Negated Horn-SAT: Clauses with at most one literal negative
 – Renamable Horn-SAT: Doesn’t look like a Horn-SAT problem, but turns into one when polarities of some variables are flipped
Phase Transitions in k-SAT

• Consider a fixed-length clause model
 – k-SAT means that each clause contains exactly k literals
• Let SAT problem comprise m clauses and n variables
 – Randomly generate the problem for fixed k and varying m and n
• Question: How does the problem hardness vary with m/n?

3-SAT Hardness

As n increases hardness transition grows sharper
Transition at $m/n \sim 4.3$

Threshold Conjecture

- For every k, there exists a c^* such that
 - For $m/n < c^*$, as $n \to \infty$, problem is satisfiable with probability 1
 - For $m/n > c^*$, as $n \to \infty$, problem is unsatisfiable with probability 1
- Conjecture proved true for $k=2$ and $c^*=1$
- For $k=3$, current status is that c^* is in the range $3.42 - 4.51$
The (2+p)-SAT Model

• We know:
 – 2-SAT is in P
 – 3-SAT is in NP
• Problems are (typically) a mix of binary and ternary clauses
 – Let $p \in \{0,1\}$
 – Let problem comprise (1-p) fraction of binary clauses and p of ternary
 – So-called (2+p)-SAT problem

Experimentation with random (2+p)-SAT

• When $p < \sim 0.41$
 – Problem behaves like 2-SAT
 – Linear scaling
• When $p > \sim 0.42$
 – Problem behaves like 3-SAT
 – Exponential scaling

• Nice observations, but don’t help us predict behavior of problems in practice
Backbones and Backdoors

- **Backbone** [Parkes; Monasson et al.]
 - Subset of literals that must be true in every satisfying assignment (if one exists)
 - Empirically related to hardness of problems
- **Backdoor** [Williams, Gomes, Selman]
 - Subset of variables such that once you’ve given those a suitable assignment (if one exists), the rest of the problem is poly-time solvable
 - Also empirically related to hardness
- But no easy way to find such backbones / backdoors! 😞

A Classification of SAT Algorithms

- **Davis-Putnam (DP)**
 - Based on **resolution**
- **Davis-Logemann-Loveland (DLL/DPLL)**
 - Search-based
 - Basis for current most successful solvers
- Stalmarck’s algorithm
 - “Different” kind of search, proprietary algorithm
- **Stochastic search**
 - Local search, hill climbing, etc.
 - Unable to prove unsatisfiability (incomplete)
Resolution

- Two CNF clauses that contain a variable x in opposite phases (polarities) imply a new CNF clause that contains all literals except x and x'
- $(a + b) \ (a' + c) = (a + b)(a' + c)(b + c)$
- Why is this true?

The Davis-Putnam Algorithm

- Iteratively select a variable x to perform resolution on
- Retain only the newly added clauses and the ones not containing x
- Termination: You either
 - Derive the empty clause (conclude UNSAT)
 - Or all variables have been selected
Resolution Example

How many clauses can you end up with?
(at any iteration)

Next Class

• How DLL algorithm works in current SAT solvers