Today’s Lecture

• Generating models of finite-state systems by observing execution traces
 – Based on a machine learning algorithm first proposed by D. Angluin in ’87 and improved upon by Rivest & Schapire in ’93

• Apr 4: Guest lecture by Anubhav Gupta on using learning in model checking
Setting

State variables $V = V_E \cup V_M$, $V_E \cap V_M = \phi$

Want to observe E and generate a good model of it
Usually easy to get a model of M

Why Learn Environment Models?

• As a middle ground between
 – Traditional, pessimistic (worst-case) verification
 – Optimistic verification (“does there exist an environment that makes my system work?”)

• To generate *environment assumptions* for use in assume-guarantee reasoning

• To deal with *incorrect models* (of system modules or environment)
 – May miss behaviors and also include spurious behaviors
A Quote

• “Assumptions are the things you don't know you're making”
 — Douglas Adams, Mark Cawardine, "Last Chance to See"

Learning Env. Model

• Model: (Deterministic) Finite Automaton
 – As a representation of the set of traces of env.

• What we can do:
 – Provide inputs to the environment
 – Observe (finite) prefixes of environment’s output trace

• Note:
 – Env. is a reactive system too, has infinitely long traces but we can only observe finite prefixes
 – So we are learning a finite automaton (not a Buchi automaton)
Another View

- Environment is a box, with input buttons and output lights
 - Outputs capture observable part of env state
- We can press some subset of input buttons at any time step
- Observe what lights turn on

Assumption for this lecture:
We can “reset” the environment at any time

Angluin’s DFA Learning Algo.
(adapted to our setting)

- Input: A box as in the previous picture
 - inputs from an alphabet \(\Sigma \)
- Outputs: a DFA that accurately represents all (finite) output traces seen so far
- What it can do:
 - Generate environment traces by supplying inputs
 - Ask an oracle whether a candidate DFA is indeed correct (if not, get a counterexample)
 - Reset environment model to initial state
Angluin’s DFA Learning Algo.
(adapted to our setting)

• Input: A box as in the previous picture
 • inputs from an alphabet Σ

• Outputs: a DFA that accurately represents all (finite) output traces seen so far
 • Given an oracle that precisely knows the environment, it learns the DFA representing exactly the output traces of the env.

• What it can do:
 – Generate environment traces by supplying inputs
 – Ask an oracle whether a candidate DFA is indeed correct (if not, get a counterexample)
 – Reset environment model to initial state

Formal Setup

• Want to learn (synthesize) a DFA (Q, Σ, δ, L)
 – Q : set of states
 – Σ : input alphabet
 – δ : transition function: $Q \times \Sigma \rightarrow Q$
 – L : labeling/output function

• What does it mean for two states of the DFA to be different?
 (In terms of the labels we observe)
Formal Setup

- Want to learn a DFA \((Q, \Sigma, \delta, L)\)
 - \(Q\) : set of states
 - \(\Sigma\) : input alphabet
 - \(\delta\) : transition function: \(Q \times \Sigma \rightarrow Q\)
 - \(L\) : labeling/output function
- What does it mean for two states of the DFA to be different?
 - \(q\) and \(q'\) are different if there is an input sequence s.t. the states reachable on that sequence from \(q\) and \(q'\) respectively have different labels

What defines a state

- Its label (observable part)
- What input sequence gets us to that state
 - Could be many, pick a representative
- What output sequence we see from that state
 - Perform “experiments” from that state to see this
- Angluin’s algorithm “names” a state by the latter two things
 - A prefix and a suffix
Algorithm Sketch

1. Start with only the DFA's initial state q_0
2. Generate a “new” state by supplying inputs
3. Check if its next states are observationally different from those of existing states
 - If yes, add it in
 - If not, ask the oracle if we have the correct DFA
 - If yes, we’re done
 - If not, use the counterexample to figure out what new state(s) to add until that counterex goes away
 - Go back to step 2

An Example

This is the DFA we want to learn (the correct environment model)
How the algorithm works on the previous example – worked out on board

Complexity

- Polynomial in size of environment model
- Good if environment model is small
 - This is why it is especially good for learning assumptions or concise env specifications
Some Refs. to Applications

• “Adaptive Model Checking” -- Groce, Peled, Yannakakis, TACAS’02
• “Learning Assumptions for Compositional Verification” -- Cobleigh et al., TACAS’03

Next: Part III of the course

• Next week: Decision procedures for fragments of first-order logic
 – Equivalent of Part I lectures on “SAT solving”
• After spring break:
 – Guest lecture
 – Your presentations