Today’s Lecture

• The role of Games in Design & Verification
• Safety Games and their solution
• Two applications
 – Controller synthesis
 – Detecting errors before reaching them
Scenario so far

• 2 (finite-state) machines:
 – M models the system
 – E models the environment
 – Compose M and E to get closed system and check property
• Traditional viewpoint: E is a conservative model of the environment
 – E models a worst-case (adversarial) scenario
 – Pros/cons of this approach?

An Optimistic View

• Instead of asking:
 Does system M work correctly in all environments?
• Consider asking:
 Is there an env E in which M works correctly?
 – If yes, and we had one such E, how could we use it in practice?
General Setting

State variables $V = V_C \cup V_M$, $V_C \cap V_M = \phi$

C is “controller”
M’s output cannot be controlled.

An Instance

```plaintext
bool l;
lock() {
    assert(!l);
    l := 1;
    /* acquire lock */
    ...
}
unlock() {
    assert(l);
    l := 0;
    /* release lock */
    ...
}
```

M

```plaintext
foo() {
    ...
    while(*) {
        if (*)
            lock();
        else
            unlock();
    }
    ...
}
```

Module A
Controller Synthesis

- Given finite-state machine M and an LTL formula ψ
- Is there a controller C which ensures that $M \parallel C$ satisfies ψ?
 - If yes, how do we find such a C?
 - If not, M is said to be uncontrollable (from its initial states)
Controller Synthesis

• Given finite-state machines M and an LTL formula ψ
• Is there a controller C which ensures that $M \parallel C$ satisfies ψ ?
 – If yes, how do we find such a C?
 – If not, M is said to be uncontrollable (from its initial states)
 • M is controllable from state s if considering s to be initial, M is controllable

Games

• We view the problem as a game between the controller C and the system M
• Assume property $\psi = G p$
• Player M wins if $M \parallel C$ reaches an error ($\neg p$) state
• C wins if it keeps $M \parallel C$ outside the error states
• Assume perfect information: C and M have perfect knowledge about each other
Games on Graphs

• Defined over the state space S of $M \parallel C$
• Asynchronous composition
 – Each node/state is either a “M state” or a “C state”
 • Assume one module changes variables at a time
 • “Turn-based” games
• Synchronous composition
 – Both M and C simultaneously decide their next states (moves) and move together

Reachability Games

• Let $p \subseteq S$ be a set of target states of $M\parallel C$
Reachability objective requires us to visit the set p
 – i.e., find C s.t. $M\parallel C$ satisfies LTL formula ___?
Safety Games

- Let \(p \subseteq S \) be the set of safe states
 Safety objective requires us never to visit any vertex outside \(p \)
 – i.e., find \(C \) s.t. \(M\|C \) satisfies LTL formula ___

Games with Buchi Objectives

- Let \(p \subseteq S \) be a set of states
 Buchi objective requires that the set \(p \) is visited infinitely often
 – i.e., find \(C \) s.t. \(M\|C \) satisfies LTL formula ___
Solving Safety Games

• Given: M, C, property G_p
 – Assume synchronous composition

• What we want:
 A strategy for C s.t. no matter what M does, C can keep $M||C$ within the region satisfying p

• What is a “strategy for C” (informally)?

Strategy σ

• For C: Mapping from a finite history of states to next state values of V_C
 $\sigma_C : Val(V)^+ \to Val(V_C)$

• Similarly, strategy for M is
 $\sigma_M : Val(V)^+ \to Val(V_M)$

• Taken together, σ_C and σ_M define the next state for $C||M$

• C wins from initial state s if for every σ_M it has a σ_C that keeps $C||M$ in the safe states
 – Note that initial state is important
Memoryless Strategy σ

- For C: Mapping from current state to next state values of V_C
 \[\sigma_C : \text{Val}(V) \rightarrow \text{Val}(V_C) \]
- Similarly, strategy for M is
 \[\sigma_M : \text{Val}(V) \rightarrow \text{Val}(V_M) \]
- Taken together, σ_C and σ_M define the next state for $C||M$

Local Strategy

- The overall strategy comprises many “local” decisions
 - which state to go to next
- Given a state $s = (s_M, s_C)$ how should M and C choose their next states?
Local Strategy

- The overall strategy comprises many “local” decisions
 - which state to go to next
- Given a state $s = (s_M, s_C)$ how should M and C choose their next states?
 - No matter what C does, M wants to force it into an error state ($\neg p$)
 - No matter what M does, C wants to continue satisfying p

Controller Synthesis for Gp

- M chooses its next state according to its transition relation R
- We want to compute a transition relation (strategy) for C, σ_C so that p is always true
- Given a state $s = (s_M, s_C)$, What is $\sigma_C(s, s_C')$?
Controller Synthesis for Gp

- M chooses its next state according to its transition relation R
- We want to compute a transition relation (strategy) for C, \(\sigma_C \) so that p is always true
- Given a state \(s = (s_M, s_C) \),
 \[
 \sigma_C(s, s_C') = \forall s_M' \ R(s, s_M') \Rightarrow p(s')
 \]
 = Set of all pairs \((s, s_C') \) s.t. no matter what M does in s, p holds in s'

Solving Safety Games backwards

- We can work backwards from error states
- \(\text{Pre}_M(s) \)
 = set of states from which, regardless of the controller, M can enter an error (¬p) state
 = \(\forall s_C' \ \exists s_M' \ (R(s, s_M') \land \neg p(s')) \)
 – Note: Pre is used above in a different sense from the normal pre operator
 – If least fixed point of the following operator is \(B \), then controllable states are \(\neg B \)
 - \(\tau(Z) = \neg p(s) \lor \forall s_C' \ \exists s_M' \ (R(s, s_M') \land Z) \)
Early Error Detection
[de Alfaro, Henzinger, Mang, CAV'00]

• We can use the game formulation to speed up symbolic model checking of LTL properties
• Idea: (for Gp)
 – Given modules A and B
 – Find all states of A that are controllable w.r.t. Gp and similarly for B
 • Denote by C_A and C_B
 • Then check if A||B satisfies $G(C_A \land C_B)$
 • Suppose this check fails. What do we know?
 – Either C_A or C_B is not satisfied in some state s of A||B
 – Say C_A: Thus, A is not controllable from s – no environment can prevent it from reaching a $\neg p$ state!
 – So we know that “A is doomed to fail” even before it fails!
Pros of Early Error Detection

• Computing C_A and C_B does not require composing A and B together
 – Avoids state space explosion
• Model checking for $G(C_A \land C_B)$ can find bugs faster
 – Reach uncontrollable states earlier
• Note: uncontrollable states are like the “root cause” of the bug
 – Useful for error localization

Complexity

• Synthesis is (not surprisingly) harder than verification
• Verification of LTL properties of finite-state systems
 – PSPACE
• Synthesis of finite-state systems to satisfy an LTL objective
 – 2EXPTIME-complete
 – For Gp it is EXPTIME-complete
Next class

- Model generation