Today’s Lecture

- **Symmetry Reduction**
 - Group states into equivalence classes by exploiting symmetries in the model
- **Compositional Reasoning**
 - Exploiting modularity by “assume-guarantee” reasoning
- **Mu-calculus & the “Property Hierarchy”**
Symmetry

- Many systems have inherent symmetry
 - Overall system might be composed of k identical modules
 - E.g., a multi-processor system with k processors
 - E.g., a multi-threaded program with k threads executing the same code with same inputs
 - Anything with replicated structure

- Question: How can we detect and exploit the symmetry in the underlying state space for model checking?

Symmetry in Behavior

- Given a system with two identical modules
 - Run: s_0, s_1, s_2, ...
 - Trace: $L(s_0)$, $L(s_1)$, $L(s_2)$, ...

 - Each $s_i = (s_{i1}, s_{i2}, \text{rest})$ comprises values to variables of both modules 1 and 2
 - If we can interchange these without changing the set of traces of the overall system, then there is symmetry in the system behavior
Exploiting Symmetry

- If a state space is symmetric, we can group states into equivalence classes
 - Just as in abstraction

- Resulting state graph/space is called “quotient” graph/space
 - Model check this quotient graph

Quotient (first attempt)

\[M = (S, S_0, R, L) \]

Let \(\cong \) be an equivalence relation on \(S \)

Assume: \(s \cong t \iff L(s) = L(t) \)

& \(s \in S_0 \iff t \in S_0 \)

Quotient: \(M' = (S', S'_0, R', L') \)

- \(S' = S/\cong \), \(S'_0 = S_0/\cong \) (states are equivalence classes with respect to \(\cong \))
- \(R'([s], [t]) \) whenever \(R(s, t) \)
- \(L'([s]) = L(s) \)
Is that definition enough?

Suppose we want to check an invariant:
Does M satisfy φ?

Instead if we check:
Does quotient M’ satisfy φ?

If M’ is constructed using the definition of \equiv on the previous slide, will the above check generate spurious counterexamples?

Stable Equivalences

Equivalence \equiv is called stable if:
$R(x, y) \Rightarrow$
for every s in [x]
there exists some t in [y] such that $R(s, t)$

Claim: Suppose \equiv is stable, then:
M satisfies φ iff $M’$ satisfies φ
(Why?)
Detecting Symmetry

• Given symmetry expressed as an equivalence relation between states, we know how to exploit it
• How do we detect/compute this equivalence relation?
 – Need to characterize it more formally

Symmetry as Permutation

• Symmetry in the state space can be viewed as “equivalence under permutation”
• Permute the set of states so that the set of traces remains the same
 – A subset of states that remains the same under permutation forms the needed equivalence class
• A representation of all possible such permutations represents symmetry in the system
A permutation function $f : S \rightarrow S$ is an automorphism if:

$$R(s, t) \iff R(f(s), f(t))$$

What is an example automorphism for this state space?

- f: $f(0,0) = 1,1$, $f(1,1) = 0,0$
 - $f(0,1) = 0,1$, $f(1,0) = 1,0$

- g: $g(0,0) = 0,0$, $g(1,1) = 1,1$
 - $g(0,1) = 1,0$, $g(1,0) = 0,1$

$A = \{ f, g, f \circ g, \text{id} \}$

The set of all automorphisms forms a group!
Equivalence using Automorphisms

Let \(s \cong t \)
if there is some automorphism \(f \) such that
\(f(s) = t \) (and \(L(s) = L(t) \land s \in S_0 \iff t \in S_0 \))

The equivalence classes of an automorphism
(sets mapped to themselves) are called orbits

Claim 1: \(\cong \) is an equivalence
Claim 2: \(\cong \) is stable \(\text{ (why?)} \)

Orbits

\[
\begin{align*}
\{ (0,0), (1,1) \} \\
\{ (0,1), (1,0) \}
\end{align*}
\]
Symmetry reduction

Map each state to its representative in the orbit

How Symmetry Reduction works in practice

- A permutation (automorphism) group is manually constructed
 - Syntactically specify which modules are identical
- Orbit relation (equivalence relation) automatically generated from this
 - Using fixpoint computation (MC, Sec. 14.3)
- An (lexicographically smallest) element of each equivalence class is picked as its representative
- S_0' and R' generated from orbit relation
- Model checking explores only representative states
Symmetry reduction

- Implemented in many model checkers
 - E.g., SMV, Murϕ (finite-state systems), Brutus (security protocols)

Compositional Reasoning
Need for Compositional Reasoning

- Model checking “flat” designs/programs does not scale
 - Can be applied locally, to small modules
 - Globally to simplified models
- Model checking simplified, flat designs is mainly a “best-effort debugging” tool

How do we scale up the method so we can use it for “verification”, not just “debugging”?

Compositional Reasoning: Divide-and-Conquer

- Idea: use proof techniques to reduce a property to easier, localized properties.

property \rightarrow \text{decomposition} \rightarrow \text{abstraction} \rightarrow \text{verification}

\{ \text{proof assistant} \}
\{ \text{model checker/decision procedure} \}
Notation

Proof rule specified as:

\[A_1, A_2, A_3, \ldots, A_n \quad \text{assumptions} \]

\[\quad C \quad \text{conclusion} \]

Assume/Guarantee Reasoning

- System and its Environment

- Each makes an assumption about the other’s behavior
- In return, each guarantees something about its own behavior

- Come up with a proof rule
 - Assumptions are what we verify
 - Conclusion is the desired property
Simple assume/guarantee proof

\[p \rightarrow q \]

- Thus, we localize the verification process
- Note abstraction is needed to benefit from decomposition (why?)

Mutual property dependence

- What about the case of mutual dependence?

\[p \Rightarrow q \]

- Note, this doesn’t work (why?)
“Circular” compositional proofs

• Let \(p \rightarrow q \) stand for
 “if \(p \) up to time \(t-1 \), then \(q \) at \(t \)”
• Equivalent in LTL of
 \(\neg (p \mathcal{U} \neg q) \)
• Now we can reason as follows:

\[
\begin{align*}
q \rightarrow p & \quad \text{verify using } A \\
p \rightarrow q & \quad \text{verify using } B \\
Gp \land Gq
\end{align*}
\]

That is, \(A \) only has to “behave” as long as \(B \) does, and vice-versa.

Temporal case splitting

Idea:
Split cases on most recent writer \(w \) at time \(t \).

\[
\phi \land \forall i: G((w=i) \Rightarrow \phi) \Rightarrow G\phi
\]

Rule can be used to focus within large process arrays... but still need to deal with interdependencies
Combine with circular reasoning

To prove case $w = i$ at time t, assume general case up to $t-1$:

$$\phi \land \forall i: G(\phi \Rightarrow ((w = i) \Rightarrow X\phi))$$

$$G\phi$$

still have many cases to prove...

Reduction by symmetry

By symmetry, suffices to prove that writes by p_1 are O.K.:

$$\phi \land G(\phi \Rightarrow ((w = 1) \Rightarrow X\phi))$$

verify using p_1

$$G\phi$$
The Mu-Calculus

Property Hierarchy

Mu Calculus

CTL*

CTL

Buchi automata

LTL

LTL without X

Legend: C
The Mu-Calculus

A recursive language for writing symbolic model-checking algorithms

\[\text{EF } a = \mu Z (a \lor \text{EX } Z) \]
\[\text{AG } a = \nu Z (a \land \text{AX } Z) \]

Mu-Calculus Syntax

\[\phi ::= a \mid \neg a \mid Z \mid \phi \land \psi \mid \phi \lor \psi \mid \text{EX } \phi \mid \text{AX } \phi \mid \mu Z \phi \mid \nu Z \phi \mid Z : \text{region variable} \]

Any predicate transformer thus expressed is monotonic, hence all fixed points exist
Mu-Calculus Semantics

\[
[[a]]_{\text{Env}} := \langle a \rangle \\
[[\neg a]]_{\text{Env}} := \Sigma \setminus \langle a \rangle \\
[[\varphi \land \psi]]_{\text{Env}} := [[\varphi]]_{\text{Env}} \cap [[\psi]]_{\text{Env}} \\
[[\varphi \lor \psi]]_{\text{Env}} := [[\varphi]]_{\text{Env}} \cup [[\psi]]_{\text{Env}} \\
[[\text{EX} \varphi]]_{\text{Env}} := \text{pre}([[\varphi]]_{\text{Env}}) \\
[[\text{AX} \varphi]]_{\text{Env}} := \forall \text{pre}([[\varphi]]_{\text{Env}})
\]

Env maps each region variable to a region
\(\Sigma \) is the universe
pre and \(\forall \text{pre} \) compute set of previous states

Operational Semantics of Mu-Calculus

\[
[[\mu Z \varphi]]_E := S' := \emptyset; \\
\text{repeat } S := S'; S' := [[\varphi]]_{E(Z \rightarrow S)} \text{ until } S' = S; \\
\text{return } S
\]

\[
[[\nu Z \varphi]]_E := S' := \Sigma; \\
\text{repeat } S := S'; S' := [[\varphi]]_{E(Z \rightarrow S)} \text{ until } S' = S; \\
\text{return } S
\]

Model checking works as above
Complexity

- Every μ/ν alternation adds expressiveness
- Buchi automata in alternation depth of 2
- Model checking complexity:
 $O\left((|\varphi| \cdot N)^d \right)$
 for formulas of alternation depth d
 - N is size of model
- Most common implementation (SMV, Mocha):
 use BDDs to represent Boolean regions

Next class

- Model checking pushdown systems
 – Finite state control with a stack