Today’s Lecture

- Abstraction in Model Checking
 - Interpolation-based model checking
- Automata-based Property Specification
 - Properties as (Buchi) automata
 - Notions of Trace Containment, Simulation, Bisimulation, Refinement
Abstract/Concrete Error Trace

1. Abstract trace OK
2. Abstract trace spurious

Counterexample Guided Abstraction-Refinement (CEGAR)

1. Create abstraction A
2. Perform (unbounded) model checking on A
3. Prove that this abstract counterexample of length k is a concrete counterexample using k-step BMC on M
4. Extract information for refinement from refutation
5. Property true
6. Counterexample of length k
7. Proof succeeds
8. Proof fails
9. OK
10. Counterexample
Proof-based Abstraction (PBA) [McMillan, Amla, 2003]

- BMC on M at depth k
 - Cex?
 - Counterexample
 - No Cex?
 - Use refutation to choose abstraction
 - Property true?
 - OK
 - False, counterexample of length k’?
 - Increase k to k’

Abstraction and Reachability

- An abstraction expands the set of states reachable from the initial state
 - OVER-APPROXIMATION
- Instead of starting by abstracting states, one can directly abstract the transition relation
 - Each time you compute the set of next states, you get an over-approximation of the actual set of next states
 - Gives a way of computing an over-approximation of the set of reachable states
Abstraction using Interpolation

- Abstraction is extracting sufficient/relevant information from a system to prove a given property.
- This notion is in some sense closely related to a notion of “interpolant” and a lemma called “Craig’s interpolation lemma”

Interpolation Lemma (Craig, 57)

- If $A \land B = \text{false}$, there exists an interpolant A' for (A,B) such that:

 $A \Rightarrow A'$

 $A' \land B = \text{false}$

 A' refers only to common variables of A, B

- Example:

 $A = p \land q$, $B = \neg q \land r$, $A' = q$
Interpolants from Proofs (Pudlak, Krajicek, 97)

- Interpolant A' for $A \land B$:

 $A \Rightarrow A'$

 $A' \land B = \text{false}$

 A' refers only to common variables of A, B

- Interpolants can be obtained from proofs

 - given a resolution-based refutation (proof of unsatisfiability) of $A \land B$,

 A' can be derived in time linear in the proof

Interpolation based Model Checking (McMillan, 2003)

- Main Idea: Pose the problem of over-approximating the set of next states as finding an interpolant

\[
S_0(v_0) \land R(v_0, v_1) \land R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k)
\]
Interpolation based Model Checking

\[S_0(v_0) \land R(v_0, v_1) \land R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k) \]

\[A = S_0(v_0) \land R(v_0, v_1) \]

\[B = R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k) \]

\[A' \text{ is a function of } v_i \text{ s.t.} \]
\[1. \ A \Rightarrow A' \]
\[2. \ A' \land B \text{ is unsat} \]

What set of states does \(A' \) represent?

Interpolation based MC

For a fixed \(k \):

1. Set \(Z \) initially to \(S_0 \)
2. Do BMC starting from \(Z \) for \(k \) steps
 - If SAT: have we found a counterexample?
 - If UNSAT, continue
3. Use interpolation to compute over-approximation of next states of \(Z \) and add them back into \(Z \)
 - Can newly added states lead to error states in \(k-1 \) steps? In \(k \) steps?
4. If \(Z \) does not increase
 - We’ve reached a fixed point. Is the property true?
5. Otherwise, back to step 2
Intuition

- A' tells us everything the prover deduced about the image of \(S_0 \) in proving it can't reach an error in \(k \) steps.
- Hence, A' is in some sense an abstraction of the image relative to the property and the bound \(k \).

Refinement

- Model checking may fail for a fixed \(k \)
 - May add a state that reaches error in \(k \) steps (getting SAT in step 2 with \(Z \neq S_0 \))
- Refinement is just increasing \(k \)
 - How big can \(k \) get?
Proof-based Abstract. vs Interpolation

Properties as Automata

- Often properties themselves are finite-state machines
 - E.g. two versions of the same system, an optimized “implementation”, and a simple-and-correct “specification”
- How do we formalize the notion of “implementation satisfies specification”?
Properties as Automata

• Often your properties themselves are finite-state machines
 – E.g. two versions of the same system, an optimized “implementation”, and a simple-and-correct “specification”

• How do we formalize the notion of “implementation satisfies specification”?
 – All behaviors (traces) of the implementation are also traces of the specification

TRACE CONTAINMENT
(traces are projected over a common set of atomic propositions)

Abstraction A and Original System M

• All traces of M are also traces of A
• If A satisfies an LTL property, does M also satisfy that property?
• How about for CTL*?
Abstraction A and Original System M

- All traces of M are also traces of A
- So any LTL property that A satisfies will also be satisfied by M
- Holds good for any CTL* property that
 - Has all negations appearing only over atomic propositions
 - Has only the “A” quantifier, not the “E” quantifier
 - ACTL*

Simulation --- Intuition

- Two finite state machines M and M’
- M’ simulates M if
 - M’ can start in a similarly labeled state as M
 - For every step that M takes from s to t, M’ can mimic it by stepping to a state with similar label as t
Simulation

• M = (S, S₀, R, L) and M' = (S', S₀', R', L')
• A relation H ⊆ S x S' is a simulation relation between M and M' means that:
 For all (s, s'), if H(s, s') then:
 – L'(s') = L(s) ∩ AP'
 – For every state t s.t. R(s, t) there is a state t' such that R'(s', t') and H(t, t')
• M' simulates M if
 – there exists a simulation relation H between them, and
 – For each s₀ ∈ S₀, there exists s₀' ∈ S₀' s.t. H(s₀, s₀')

Simulation and Trace Containment

Are they the same? If not, which implies which?
Bisimulation

• M and M’ are bisimulation equivalent (bisimilar) if
 – M simulates M’ and vice-versa
 – Note: atomic proposition sets must be identical

• Are bisimulation and trace equivalence the same thing?

(Bi)Simulation and (A)CTL*

• If M’ simulates M, then any ACTL* property satisfied by M’ is satisfied by M

• If M’ and M are bisimilar, any CTL* property satisfied by one is also satisfied by the other
Verification

• How do we check for:
 – Trace containment?
 – Simulation?
 – Bisimulation?

• Assume that your machines are given as Kripke structures/Buchi automata
 – For the latter, all accepting paths correspond to runs

Verification

• How do we check for:
 – Trace containment?
 • Can be done using LTL model checking (see MC Sec. 9.6)
 – Simulation?
 • Iterative computation → next slide
 – Bisimulation?
 • Effectively same as simulation check (just done in two directions) [see Ch. 11 of MC]
Simulation Checking

- We attempt to compute the largest relation H such that

 For all (s, s'), if $H(s, s')$ then:
 - $L'(s') = L(s) \cap AP'$
 - For every state t s.t. $R(s, t)$ there is a state t' such that $R'(s', t')$ and $H(t, t')$

- Then, check whether every initial state of M is related by H to an initial state of M'

Simulation Checking

- We attempt to compute the largest relation H such that

 For all (s, s'), if $H(s, s')$ then:
 - $L'(s') = L(s) \cap AP'$
 - For every state t s.t. $R(s, t)$ there is a state t' such that $R'(s', t')$ and $H(t, t')$

- Compute sequence H_0, H_1, \ldots, H_k where:
 - $H_0(s, s')$ iff $L'(s') = L(s) \cap AP$
 - $H_{n+1}(s, s')$ iff
 - $H_n(s, s')$, and
 - $\forall t \{ R(s, t) \Rightarrow \exists t' \ (R(s', t') \wedge H_n(t, t')) \}$
 (How to implement this? Why will it terminate?)
Simulation vs. Trace Containment

• Why would we want to use one over the other?

Next class

• Other optimizations in model checking:
 – Compositional reasoning
 – Symmetry reduction
• Mu-calculus