Today’s Lecture

- Abstraction
 - Counter-example guided abstraction refinement (CEGAR)
- Symbolic Model Checking without BDDs
 - Uses SAT instead of BDDs
 - Started with Bounded Model Checking
 - Extended to Unbounded Model Checking
 - Abstraction + BMC
 - Interpolation-based model checking (next class)
Abstraction

• Extracting information from a system description that is relevant to proving a property
• Goal: Reduce size of system model

• Terminology:
 – Original model = Concrete system/model

Formal Definition

• Abstraction is defined by an abstraction function
• Abstraction function $\alpha : S \rightarrow \hat{S}$
 – S – set of concrete states
 – \hat{S} – set of abstract states
• An abstraction induces an equivalence relation over the concrete states
 – Two concrete states are equivalent if they are mapped to the same abstract state
Formal Definition

• Suppose concrete system is (S, S_0, R, L), and abstract system $(\hat{S}, \hat{S}_0, \hat{R}, \hat{L})$

• Abstraction function $\alpha : S \to \hat{S}$
 – S – set of concrete states
 – \hat{S} – set of abstract states

• $\hat{S}_0 = \{ t \mid \exists s . S_0(s) \land \alpha(s) = t \}$

• $\hat{R} = ?$
 – How do we algorithmically construct \hat{S}_0 and \hat{R}?
 – How are labels assigned to abstract states?

Example of Abstraction

• Our examples in this lecture will be abstractions that extract a subset of state variables
 – State variables partitioned into: visible and invisible
 – An abstract state is an evaluation of visible variables
 – What is α?
 – Two concrete states that agree on values of visible variables are grouped together
Example

• Abstractions exhibit more behaviors

Abstraction and Properties

• If an LTL property is true on the abstract model, is it necessarily true on the concrete model?

• If an LTL property is false on the abstract model, is it necessarily false on the concrete model?
Recap: Cone-of-influence

- Suppose the property \(\phi \) mentions a subset of variables \(V' \) of the total set \(V \)
 - Track variables that \(V' \) syntactically depend on, add them to \(V' \), and iterate until no new variable dependencies generated
 - Resulting \(V' \) is the cone-of-influence and its elements are the visible variables
- Problem: Final \(V' \) might be as big as \(V \) because it only tracks syntactic dependencies
 - But resulting abstraction is precise \(\rightarrow \) if \(\phi \) is false in abstract model it is false in concrete model

Example: Cone-of-influence can be conservative

Let \(a, b, c, g \) be state variables

What are the expressions for next state variables \(c' \) and \(g' \)?

Suppose we want to prove \(G(c \rightarrow Xc) \). What’s the cone of influence?

If we make \(g \) invisible, can we still prove the property?
- what about \(a \) and \(b \)?
Another approach to Abstraction

• Start with an arbitrary subset of variables as visible
 – An option: the ones mentioned in the property
• Construct abstract model, model check it
 – If property passes, we’re done
 – If we get a counterexample, check whether it is a counterexample for the concrete model
 • If yes, we’re done
 • If not (spurious counterex.) we must make more variables visible and repeat (REFINEMENT)

Counter-Example Guided Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

• Start with a choice of α
• Construct abstract model, model check it
 – If property passes, we’re done
 – If we get a counterexample, check whether it’s is a counterexample for the concrete model (How do we do this?)
 • If yes, we’re done
 • If not (spurious counterex.), we must refine α and repeat
Intuition about Refinement

- Remember that α partitions the concrete states into equivalence classes
 - C_1, C_2, \ldots, C_k
- A refinement α' can further break up the C_i's
 - States that are equivalent under α' should also be equivalent under α

Formal Definition of Refinement

- α' refines α if
 - $\forall s, t . \alpha'(s) = \alpha'(t) \Rightarrow \alpha(s) = \alpha(t)$
 - $\exists s, t . \alpha'(s) \neq \alpha'(t) \land \alpha(s) = \alpha(t)$

- Given above definition, why will the CEGAR iteration terminate?
Visible/Invisible Abstraction

• The set of variables is partitioned into visible V and invisible I

• Questions:
 – How do we construct the abstract model?
 • Given an arbitrary set of visible variables
 – How do we refine the abstraction?
 • i.e., how do we pick new variables to make visible?
 • We want to pick those that will remove the current spurious counterexample

Constructing Abstract Model

• Simply make all invisible variables take arbitrary values
 – Non-deterministically assigned 0 or 1 on each step
• How does this make model checking more efficient?
Constructing Abstract Model

- Simply make all invisible variables take arbitrary values
 - Non-deterministically assigned 0 or 1 on each step
- How does this make model checking more efficient?
 - Avoids some existential quantification, simplifies transition relation

Refining the Abstraction

- The CEGAR approach is most often used today in conjunction with a technique called Bounded Model Checking
- We will study abstraction-refinement in that context
Bounded Model Checking (BMC)

[Biere, Clarke, Cimatti, Zhu, ’99]

- **Given**
 - A FSM M described by S_0, R
 - A property $G \ p$ and a integer $k \geq 1$
- **Determine**
 - Does M generate a counterexample to $G \ p$ of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

Unfolding in BMC

- **Unfold the model** k times:
 $$U_k = R_0 \land R_1 \land \ldots \land R_{k-1}$$

- **Use SAT solver to check satisfiability of**
 $$S_0 \land U_k \land E_k$$

- A satisfying assignment is a counterexample of k steps
Old view on BMC

- Originally introduced as a debugging tool
 - By finding counterexamples
- Proving properties:
 - Only possible if a bound on the diameter of the state graph is known
 - The diameter is the maximum over shortest path lengths between any two states.
 - Worst case is exponential in system description.

New perspectives: BMC + CEGAR

- BMC + Abstraction can prove properties too!
- Here’s how it works:
 Why does this terminate?

 Create abstraction A
 Extract information for refinement from refutation
 Prove that this abstract counterexample of length k is a concrete counterex. using k-step BMC on M
 Counterexample

Proof fails

Property true

OK

Counterexample of length k
Steps

1. Create abstraction A ✔
2. Model check A ✔
3. Prove that abstract counterexample is a concrete counterexample using BMC
4. Use refutation of abstract counterexample to do refinement

Checking Abstract Counterex.

- Recall: BMC for length k
 - Use SAT solver to check satisfiability of $S_0 \land U_k \land E_k$
- How do we use this to prove the abstract counterexample of length k also holds for concrete model?
Checking Abstract Counterex.

- Recall: we use BMC for the length k of the abstract counterexample
 - Use SAT solver to check satisfiability of $S_0 \land U_k \land E_k$
 - under the partial assignment corresponding to values of the visible variables
 - If SAT solver reports “SAT” we have a concrete counterexample
 - What is a satisfying assignment?
 - If not, we have a refutation \leftarrow proof of unsatisfiability

Refinement

- Given proof of unsatisfiability of $S_0 \land U_k \land E_k$
 - under the partial assignment corresponding to values of the visible variables
- Look at unsatisfiable core of proof
 - Invisible variables that appear in the core indicate why the abstract counterexample is spurious
 - Make those variables visible
Modifying the Abstraction-Refinement Loop

• Insight: Why pick an abstraction to start with?
 – Initial abstraction may not be the best start point
 – Why not do BMC initially and use its results to generate abstractions?

Proof-based Abstraction (PBA)

[BMC on M at depth k] -> Cex?
 Cex? -> Counter-example
 No Cex? -> Use refutation to choose abstraction
 Increase k to k' -> Other differences with earlier loop?
 Property true? -> OK
 False, counterexample of length k'?
Termination of PBA

- Depth k increases at each iteration
- Eventually $k > \text{diameter} \ d$
- If $k > d$, no counterexample is possible

CEGAR vs. PBA

- Refutation via k-step BMC
 - PBA refutes all concrete counterexamples of up to length k
 - CEGAR refutes only the abstract counterexample of length k
- So PBA does more work in the refutation, but usually results in fewer iterations of the loop
Next class

- Interpolation-based Model Checking
- Richer kinds of properties (than temporal logic) & verification
 - Mu-calculus, simulation, bisimulation, etc.