Announcements

• Meet with me in early March to discuss your paper presentation
• Slots assigned in the order in which you will present (will be sent by e-mail)
• Default meeting time is my Mon/Wed office hour
Today’s Lecture

• Symbolic model checking with BDDs
 – Checking CTL properties: quick recap
 – Fairness
 – Counterexample/witness generation for general CTL
 – Optimizations
• Abstraction

Least and Greatest Fixpoints

• Let
 – $S = \{s_0, s_1\}$
 – $\tau(Z) = Z \cup \{s_0\}$, $Z \subseteq S$
• What’s the least fixpoint of τ? The greatest fixpoint? Are they the same?

• Notation: “fixpoint” and “fixed point” sometimes used interchangeably
Model Checking CTL Properties

• We define a general recursive procedure called “Check” to do the fixpoint computations

• Definition of Check:
 – Input: A CTL property \(\Pi \) (and implicitly, \(R \))
 – Output: A Boolean formula \(B \) representing the set of states satisfying \(\Pi \)

• If \(S_0(v) \rightarrow B(v) \), then \(\Pi \) is true

The “Check” procedure

Cases:
• If \(\Pi \) is a Boolean formula, then \(\text{Check}(\Pi) = \Pi \)
• Else:
 – \(\Pi = \text{EX} \psi \), then \(\text{Check}(\Pi) = \text{CheckEX}(\text{Check}(\psi)) \)
 – \(\Pi = \text{E} (\psi_1 \ U \psi_2) \), then
 \[\text{Check}(\Pi) = \text{CheckEU}(\text{Check}(\psi_1), \text{Check}(\psi_2)) \]
 – \(\Pi = \text{E} \ G \psi \), then \(\text{Check}(\Pi) = \text{CheckEG}(\text{Check}(\psi)) \)

• Note: What are the arguments to CheckEX, CheckEU, CheckEG? CTL properties or Boolean formulas?
CheckEU

• CheckEU(p, q) returns a set of states, each of which is such that
 – Either q is true in that state
 – Or p is true in that state and you can get from it to a state in which p U q is true

• Let Z_0 be our initial approximation to the answer to CheckEU(p, q)

• $Z_k(v) = \{ q(v) + [p(v) . \exists v' \{ R(v, v') . Z_{k-1}(v') \}] \}$

• What’s Z_0? Why will this terminate?

Counterexample/Witness Generation for CTL

• Counterexample = run showing how the property is violated
 – Formulas with universal path quantifier A
• Witness = run showing how the property is satisfied
 – Formulas with existential path quantifier E
 – Can also view as counterexample for the negated property
 • E.g. E G p and A F ¬ p
Witness Generation for EG p

• Fixpoint formulation for E G p:
 – $\nu Z . p \land EX Z$
 – $\tau(Z) = p \land EX Z$

• Fixpoint computation yields sequence Z_0, Z_1, \ldots, Z_k
 – $Z_0 = True$ (universal set)
 – $Z_1 = \tau(True) = ?$
 – each Z_i is a BDD representing a set of states
 – How would you describe an element of Z_i?

• We need to generate the counterexample from $S_0, R, Z_0, Z_1, \ldots, Z_k$

Witness Generation for EG p

• Fixpoint computation yields sequence Z_0, Z_1, \ldots, Z_k
 – A state in Z_i ($i > 0$) satisfies p and there is a path of length $i-1$ from that state comprising states satisfying p
 – How would you describe an element of Z_k?
 • Remember: it’s the fixpoint
Witness Generation for EG p

- Fixpoint computation yields sequence Z_0, Z_1, \ldots, Z_k
 - A state in Z_i satisfies p and there is a path of length $i-1$ from that state comprising states satisfying p
 - How would you describe an element of Z_k?
 - State in Z_k has path from it of length $k-1$ or more (including a cycle) with all states satisfying p
 - If S_0 is contained in Z_k, any initial state has such a path

Witness Generation for EG p

- Let s_0 be an initial state with a desired witness path
 - We need to reproduce one such witness
 - How can we do this?
Witness Generation for EG p

- Let s_0 be an initial state with a desired witness path
 - We need to reproduce one such witness
 - How can we do this?
 - Main insight: desired successor of s_0 also satisfies EG p, and so on
 - Look for a cycle in such a computed chain
 - Why should there be a cycle?

Fairness

- A computation path is defined as fair if a fairness constraint p is true infinitely often along that path
 - Fairness constraint is a state predicate
 - Generalized to set of fairness constraints $\{p_1, p_2, \ldots, p_k\}$ by requiring each element of the subset to be true infinitely often
- Example: Every process in an asynchronous composition must be scheduled infinitely often
Why does Fairness matter?

- We need to model policies that enforce fairness in the model
 - Otherwise, we will get spurious counterexamples
 - Example: A scheduler might use round-robin scheduling amongst processes
 - Instead of verifying the system for a particular fixed fair scheduling strategy, we can verify it for all fair schedulers
Fairness in Symbolic Model Checking of CTL

• Suppose Fairness means that each element of \(\{p_1, p_2, \ldots, p_k\} \) must be true infinitely often

• Fair formulation of \(\text{EG} \ f \) is: The largest set of states \(Z \) such that
 – All of the states in \(Z \) satisfy \(f \)
 – For all fairness constraints \(p_i \), and all states \(s \in Z \), there is a path of length 1 or greater from \(s \) to a state in \(Z \) satisfying \(p_i \) such that all states along that path satisfy \(f \)

Fairness in Symbolic Model Checking of CTL

• Fair formulation of \(\text{EG} \ f \) is: The largest set of states \(Z \) such that
 – All of the states in \(Z \) satisfy \(f \)
 – For all fairness constraints \(p_i \), and all states \(s \in Z \),
 • there is a path of length 1 or greater from \(s \) to a state in \(Z \) satisfying \(p_i \) such that all states along that path satisfy \(f \)
 • i.e., there is a next state of \(s \) satisfying \(f \cup (Z \land p_i) \)
 – What’s the fixpoint formulation of \(\text{EG} \ f \) with fairness?
Fairness in Symbolic Model Checking of CTL

• Fair formulation of EG \(f \) is: The largest set of states \(Z \) such that
 – All of the states in \(Z \) satisfy \(f \)
 – For all fairness constraints \(p_i \), and all states \(s \in Z \),
 • there is a path of length 1 or greater from \(s \) to a state in \(Z \) satisfying \(p_i \) such that all states along that path satisfy \(f \)
 • i.e., there is a next state of \(s \) satisfying \(f \cup (Z \land p_i) \)

\[
\forall Z. f \land (\land_i \text{EX} E[f \cup (Z \land p_i)])
\]

Counterexample Generation under Fairness

• Algorithm needs to be adjusted accordingly
 – Need to find a cycle that visits each fairness constraint \(p_i \) at least once
 – See Clarke et al. textbook for details
BDD-related Optimizations – Key Ideas

• Choose a good BDD variable ordering to start with
• Keep the support of computed BDDs as small as possible

What do we need to represent?

• Set of transitions: $R(v, v')$
• Sets of states: $S_0(v)$, intermediate results of fixpoint computations
Representing $R(v, v')$

- How should the v and v' variables be ordered in the BDD relative to each other?
- Keep v_i close to v'_i (interleave)

Relational Product

- Recall that reachability analysis involved computing
 \[S_{i+1}(v) = S_i(v) \lor (\exists v \{ S_i(v) \land R(v,v') \}) \] [v/v']

- Relational Product operation is
 \[\exists v \{ S_i(v) \land R(v,v') \} \]

- This is done as one primitive BDD operation
 – Rather than an AND followed by EXISTS (why?)
Disjunctive Partitioning

- Suppose we have an asynchronous system composed of k processes
- Then, $R(v, v')$ can be decomposed as
 $$\bigvee_i R_i(v, v')$$
 - Plug into expression for relational product
 - Does \exists distribute over \lor? What use is that?

Conjunctive Partitioning

- Suppose we have a synchronous system composed of k processes
- Then, $R(v, v')$ can be decomposed as
 $$\bigwedge_i R_i(v, v')$$
 - Can we do the same optimization as on the previous slide? If not, is a similar optimization possible?
Conjunctive Partitioning

- Suppose we have an synchronous system composed of k processes
- Then, $R(v, v')$ can be decomposed as
 \[\bigwedge_i R_i(v, v') \]
 - Can we do the same optimization as on the previous slide? If not, is a similar optimization possible?
 - We can choose an order in which to quantify out variables and push the quantifiers as far in as possible
 - What order do we pick?

Abstraction

- Reduce the size of the system model by throwing out information
 - If this information is irrelevant to the property of interest (i.e., the property is true on the original model iff it is true on the abstract model) then it is a **precise** abstraction
 - If the property is true on the original model if it is true on the abstract model, it is a **safe** abstraction
A Simple Form of Abstraction

• Suppose the temporal logic property mentions only a subset of variable V' of the entire set V
• Can I use this information to construct a precise abstraction of the original model?

– YES. One such method is the “cone of influence” reduction.
 • Transitively propagate syntactic dependences on variables and “delete” all variables not in the transitive closure
Cone-of-Influence Reduction

• A staple part of all model checkers
• However: often most of the variables remain in the cone-of-influence
 – Need further abstraction

Next class

• More on abstraction
• Symbolic model checking without BDDs