Learning Abstractions for Model Checking

Anubhav Gupta
Cadence Berkeley Labs
Overview

- Abstraction for Model Checking ≡ Inductive Learning
 - Learning and Abstraction-Refinement
 - Learning Abstractions without Refinement
Outline

- Machine Learning
- Abstraction
- Learning and Abstraction-Refinement
- Learning Abstractions without Refinement
Machine Learning

- Process that causes a system to improve its performance at a particular task with experience [Mitchell]
Inductive Learning

\[S \]
\[\langle x_1, c(x_1) \rangle \]
\[\langle x_2, c(x_2) \rangle \]
\[\vdots \]
\[\langle x_k, c(x_k) \rangle \]

\[f : X \rightarrow C \]

\[f \in F \]

Classifier

Generalize

Predict

\[x \]

\[f(x) \]

Inductive Learning: Generalizing from Samples
Inductive Bias

- Generalization requires bias towards certain target functions
 - Completely Unbiased Learner: Learning boolean functions by memorization

- Inductive bias captures the domain-specific assumptions that help in classifying unseen instances

- Two forms on inductive biases:
 - Restriction Bias: Set of candidate functions is restricted
 - Preference Bias: Certain functions preferred over others
Generating Samples

- Random Sampling: Training set provided to learner
- Queries: Learner asks teacher specific questions about the target function to generate samples
 - Membership queries
 - Input: Object
 - Output: Classification
 - Equivalence queries
 - Input: Target function
 - Output: Done or Misclassified object with classification
Model Checking

Model Checking for Safety Properties
State-Explosion Problem

Too many states to handle
Abstraction

Abstraction Function $h : S \rightarrow \hat{S}$
Abstraction

Preserves all the behaviors of the concrete model
Abstraction

- **Preservation Theorem**: If property holds on abstract model then property holds on concrete model.

- **Abstraction For Model Checking**: Find a small abstract model on which the property holds.
Abstraction

Abstract model may exhibit spurious behavior. Try another abstraction function.
Abstraction Functions

- Candidate abstraction functions are implicitly defined by the technique used for constructing abstract models.

- Two popular techniques:
 - Predicate Abstraction
 - Localization Abstraction
Localization Abstraction

- Partition state variables into visible (\(\mathcal{V}\)) and invisible (\(\mathcal{I}\)) variables
 - Intuitively, visible variables are the important variables
- Abstract model consists of only the visible variables
- Abstraction function maps a concrete state to its projection onto the visible variables
Abstraction Functions for Localization

\[V = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \]

\[\mathcal{V} = \{x_1, x_2, x_4, x_6\} \]

\[\mathcal{I} = \{x_3, x_5, x_7\} \]

Concrete states having the same value for visible variables are mapped to same abstract state
Localization Abstraction for Circuits

\[V = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \]
\[\mathcal{V} = \{x_1, x_2, x_4, x_6\} \]
\[\mathcal{I} = \{x_3, x_5, x_7\} \]

Hence the name localization
Abstraction \equiv Inductive Learning

Goal of abstraction is to learn an abstraction function that classifies the concrete states into abstract states while preserving the property
Inductive Bias of Abstraction

- **Restriction Bias**
 - Number of possible abstraction functions is huge
 - Circuit with n boolean variables
 - Number of ways to partition 2^n states into disjoint subsets
 - Bell Number
 \[B_{2n} \gg 2^{2^n} \]
 - Number of candidate functions is usually much smaller
 - Localization Abstraction: 2^n abstraction functions
 - Captures domain knowledge: Property is localizable

- **Preference Bias**
 - Smaller abstract models are better
What are the samples?

How are the samples generated?

How is the abstraction function computed from the samples?
Outline

- Machine Learning
- Abstraction
- Learning and Abstraction-Refinement
- Learning Abstractions without Refinement
Refinement

For localization, refinement corresponds to making more variables visible.

h' is a refinement of h.
Abstraction-Refinement Loop

- **Abstract**
 - M, h

- **Model Check**
 - \hat{M}
 - Fail
 - **Refine**
 - h'
 - Spurious
 - Check
 - Counterexample
 - Real
 - Bug

- **Check**
 - Pass
 - No Bug

- **SAT-Based Concretization**
Many Refinement Heuristics

- Identifying conflicting latches with 3-valued simulation of counterexample [Wang et. al.]
- Identify common variable assignments across multiple counterexamples [Glusman et. al.]
- SAT-Proof based refinement [Chauhan et. al.]
- Refinement by failure-state splitting [Yuan Lu et. al.]
Put $\mathcal{B}(s_f) = \{ R(s_f, s_{f+1}) \land C_f(s_f) \land C_{f+1}(s_{f+1}) \}_{i=1}^{f-1} \land \{ C_f(s_f) \land C_{f+1}(s_{f+1}) \}_{i=1}^{f}$.
Refinement

Put deadend and bad states in separate abstract states
State-Separation Problem

Refinement: Find subset u of I that separates all pairs of deadend and bad states and make the visible states separate the set.
A Simple Approach

- Generate all the deadend and bad states
 - Explicitly
 - Symbolically
- Compute the separating set from these
- Previous work [Yuan Lu et. al.] generated BDDs for deadend and bad states

- Infeasible for large systems
Sampling

- Learn the separating set from samples of deadend and bad states
- Use SAT-solvers to generate multiple samples efficiently
Learning and Abstraction-Refinement

\[S_D \cup S_B \]

\[
\begin{array}{ll}
d_1 & b_1 \\
d_2 & b_2 \\
\vdots & \vdots \\
d_p & b_q \\
\end{array}
\]

\[h : S \rightarrow S' \]

\[s \in S \quad \rightarrow \quad h(s) \]

Classifier

\[\forall d \in D. b \in B. \quad h(d) \neq h(b) \]
Computing the Separating Set

- **Integer Linear Programming (ILP)**
 - Smallest separating set
 - Computationally expensive

- **Decision Tree Learning**
 - Computationally efficient
 - Non-optimal
Computing Separating Set using ILP

\[\text{Min } \sum_{i=1}^{|I|} v_i \]

subject to: \((\forall d \in S_D) (\forall b \in S_B) \sum_{1 \leq i \leq |I|, \text{ } d, b \text{ differ at } v_i} v_i \geq 1 \]

\(v_i = 1\) means that \(v_i\) is in the separating set
Computing Separating Set using Decision Tree Learning

- Decision Tree Learning constructs a decision tree that classifies a set of samples using a set of attributes
- Samples: $S_D \cup S_B$
- Attributes: \mathcal{I}
- ID3 algorithm
 - Construct small tree
- Separating set consists of variables on the nodes of the decision tree

Separating Set
$\{v_1, v_2, v_4\}$
Generating Samples

- **Random Sampling**
 - Generate multiple satisfying assignments using SAT-solver on \mathcal{D} and \mathcal{B}

- **Equivalence Queries**
 - Query the teacher for samples that are not separated by the current separating set
 - Teacher:

$$\Phi(Sep) \equiv \mathcal{D}(v_i) \land \mathcal{B}(v'_i) \land \bigwedge_{v_i \in Sep} v_i = v'_i$$
Sampling with Equivalence Queries

\[Sep = \{\} \]

1. Run SAT-solver on \(\Phi(Sep) \)
 - Unsatisfiable: STOP
 - Satisfiable: Add to sample set

2. Compute new \(Sep \)
Generating Good Samples

- Deadend and bad state pairs that differ in small number of variables are good
 - Eliminate a larger portion of the search space
 - Faster convergence to the separating set
- Can be formulated as optimization problem with Pseudo-Boolean Constraints
 - Solved with Pseudo-Boolean Solver (PBS)
Metrics for Quality of Abstract Models

- Number of State Variables
- Number of Gates
- Number of Inputs
Experimental Evaluation

ABSREF Tool
- Implemented inside NuSMV
- SAT-solver: zChaff
- ILP-solver: Ip.solve
- Model Checker: Cadence SMV

Compared with
- BDD-based Model Checking (Cadence SMV)
- SAT-Proof based refinement [Chauhan et. al.]
Results

<table>
<thead>
<tr>
<th>Circuit</th>
<th>SMV</th>
<th>Rand, ILP</th>
<th>Rand, DTL</th>
<th>EqvQ, DTL</th>
<th>Chauhan</th>
<th>EqvQ, Inp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>S</td>
<td>L</td>
<td>Time</td>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>IU30</td>
<td>7.3</td>
<td>8.0</td>
<td>3</td>
<td>20</td>
<td>7.5</td>
<td>3</td>
</tr>
<tr>
<td>IU35</td>
<td>19.1</td>
<td>11.8</td>
<td>4</td>
<td>21</td>
<td>12.7</td>
<td>4</td>
</tr>
<tr>
<td>IU40</td>
<td>53.6</td>
<td>25.9</td>
<td>6</td>
<td>23</td>
<td>19.0</td>
<td>5</td>
</tr>
<tr>
<td>IU45</td>
<td>226.1</td>
<td>28.3</td>
<td>5</td>
<td>22</td>
<td>25.3</td>
<td>5</td>
</tr>
<tr>
<td>IU50</td>
<td>1754</td>
<td>160.4</td>
<td>13</td>
<td>32</td>
<td>85.1</td>
<td>10</td>
</tr>
<tr>
<td>IU55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IU60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IU65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IU70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IU75</td>
<td>-</td>
<td>1080</td>
<td>21</td>
<td>38</td>
<td>586.7</td>
<td>16</td>
</tr>
<tr>
<td>IU80</td>
<td>-</td>
<td>1136</td>
<td>21</td>
<td>38</td>
<td>552.5</td>
<td>16</td>
</tr>
<tr>
<td>IU85</td>
<td>-</td>
<td>1162</td>
<td>21</td>
<td>38</td>
<td>581.2</td>
<td>16</td>
</tr>
<tr>
<td>IU90</td>
<td>-</td>
<td>965</td>
<td>20</td>
<td>37</td>
<td>583.3</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th>Line</th>
<th>Chauhan</th>
<th>EqvQ, Inp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>M9</td>
<td>TRUE</td>
<td>10.2</td>
<td>2</td>
</tr>
<tr>
<td>M6</td>
<td>TRUE</td>
<td>44.3</td>
<td>4</td>
</tr>
<tr>
<td>M16</td>
<td>TRUE</td>
<td>1162</td>
<td>61</td>
</tr>
<tr>
<td>M17</td>
<td>TRUE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D6</td>
<td>20</td>
<td>917</td>
<td>46</td>
</tr>
<tr>
<td>IUc1</td>
<td>TRUE</td>
<td>3530</td>
<td>13</td>
</tr>
</tbody>
</table>
Outline

- Machine Learning
- Abstraction
- Learning and Abstraction-Refinement
- Learning Abstractions without Refinement
Many Refinement Heuristics

- Identifying conflicting latches with 3-valued simulation of counterexample [Dong Wang et. al.]
- All of these are Heuristics!
- Identify common variable assignments across multiple counterexamples [Glusman et. al.]
- SAT-Proof based refinement [Chauhan et. al.]
- Refinement by failure-state analysis [Yuan Lu et. al.]
Many Refinement Heuristics

- Identifying conflicting latches with 3-valued simulation of counterexample [Dong Wang et. al.]
- All of these are Heuristics! Identifying common variable assignments across multiple counterexamples [Glusman et. al.]
- SAT-Proof based refinement [Chauhan et. al.]
- Refinement by failure-state analysis [Yuan Lu et. al.]
Drawbacks of Failure-State Splitting

\[\mathcal{V} = \{x\} \quad \mathcal{I} = \{y, z\} \]

\[(x) \quad (0) \quad (1) \quad (2) \quad (3) \quad (4) \]

Failure State

Deadend State

Bad States

Separating Set: \(\{y, z\} \)
Drawbacks of Failure-State Splitting

\[\mathcal{V} = \{x, y, z\} \]
Drawbacks of Failure-State Splitting

\[\nu = \{x, y\} \]

\[
\begin{array}{cccccc}
(x, y) & (0, 0) & (1, 0) & (2, 0) & (3, 0) & (4, 0) \\
(z) & & & & & \\
(0) & & & & & \\
(1) & & & & & \\
(0) & & & & & \\
(1) & & & & & \\
(x, y) & (0, 1) & (1, 1) & (2, 1) & (3, 1) & (4, 1) \\
\end{array}
\]
Drawbacks of Abstraction-Refinement

- Adds details to abstract model; never removes anything
 - Information added to eliminate counterexample might also eliminate previously seen counterexample
- Does not look at many counterexamples of different lengths simultaneously
 - Abstract model depends on what counterexamples are considered and in what order
- Abstraction-Refinement cannot find the smallest abstract model
- This drawback is present no matter what heuristic is used to compute the refinement
What is needed?

- We need a strategy of eliminating spurious behavior that is not heuristic.
- We need a strategy that is not based on refinement.
- We need a strategy that analyzes all the counterexamples simultaneously.
Broken Traces

- Broken Traces on concrete model corresponding to an abstraction function
- Sequence of k pairs of concrete states

$$\langle (s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k) \rangle$$

- Each s_i and t_i map to same abstract state
- s_1 is an initial state
- t_k is an error state
- Each $t_i \rightarrow s_{i+1}$ is a concrete transition
- Break at i if $s_i \neq t_i$. No breaks = Real bug
\[\langle (s_1, t_1), (s_2, t_2), (s_3, t_3), (s_4, t_4), (s_5, t_5) \rangle\]
Broken Traces And Abstract Counterexamples
Broken Traces and Abstract Counterexamples

- **Broken Trace Theorem:** There is a counterexample on the abstract model if and only if there is a corresponding broken trace on the concrete model.
Eliminating Broken Traces

Abstraction function eliminates a broken trace if it maps some s_i and t_i into separate abstract states.
Our Abstraction Strategy

- Find an abstraction function that eliminates all broken traces

- The smallest abstract model that eliminates all broken traces is the smallest abstract model that can prove the property
Sampling

- Computationally infeasible to generate all broken traces and eliminate them
- **Learn the abstraction function** from samples of broken traces
- Use abstract counterexamples to guide the search for broken trace samples
Learning Abstractions without Refinement

\[S_T \]

\[t_1 \]

\[t_2 \]

\[\cdot \]

\[\cdot \]

\[\cdot \]

\[t_p \]

\[h : S \rightarrow \tilde{S} \]

\[\forall t \in T. \ h \text{ eliminates } t \]

Classifier

\[s \in S \Rightarrow h(s) \text{ Predict} \]
Learning Abstractions (LearnAbs)

- Broken Trace
- Samples
- Abstract Model
- Eliminating Abstraction Function
- Property Holds
- Real Bug
- Broken Traces
Computing the Eliminating Model

\[\langle (s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k) \rangle \]

Eliminating Set for the Broken Trace
Computing Eliminating Model

Find subset \mathcal{V} of variables that hits the eliminating set of all broken trace samples.

Find the smallest \mathcal{V}.

T_1

T_2

T_3

T_4
Computing Eliminating Model

- **Minimum Hitting Set**
 - Can be formulated as an Integer Linear Program
 - Smallest Eliminating Model

- **Approximate algorithms**
 - Faster but non-optimal
Learning Abstractions (LearnAbs)

- Eliminating Abstraction Function
 - Broken Traces
 - Abstract Model
 - Property Holds
 - Real Bug
 - Broken Trace Samples
SAT with Hints

- SAT-solver modified to produce a satisfying assignment that is close to a given partial assignment (hint)
- SAT-solver is forced to first make decisions corresponding to the hint
Generating Broken Traces

- Use SAT with hints
 - Hints from previous state
- Break if necessary
- No expensive BMC unfolding
Experimental Evaluation

LEARNABS Tool
- Input: Bit-level SMV net-lists
- SAT-solver: zChaff
- ILP-solver: CPLEX
- Model Checker: Cadence SMV

Compared with
- SAT-Proof based abstraction [Chauhan et. al., McMillan et. al.]
 - Single Counterexample (S) mode: Model Checker called after abstract counterexample is eliminated
 - All Counterexamples (A) mode: Model Checker called after all counterexamples of current length are eliminated
Results

<table>
<thead>
<tr>
<th>circuit</th>
<th>reg</th>
<th>cex</th>
<th>SATProof (S)</th>
<th>LearnAbs(S)</th>
<th>SATProof (A)</th>
<th>LearnAbs(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time</td>
<td>itr</td>
<td>abs</td>
<td>time</td>
<td>itr</td>
<td>abs</td>
</tr>
<tr>
<td>PJ00</td>
<td>348</td>
<td>T</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>PJ01</td>
<td>321</td>
<td>T</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>PJ02</td>
<td>306</td>
<td>T</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PJ03</td>
<td>306</td>
<td>T</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PJ04</td>
<td>305</td>
<td>T</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>PJ05</td>
<td>105</td>
<td>T</td>
<td>9</td>
<td>35</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>PJ06</td>
<td>328</td>
<td>T</td>
<td>209</td>
<td>23</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>PJ07</td>
<td>94</td>
<td>T</td>
<td>18</td>
<td>13</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>PJ08</td>
<td>116</td>
<td>T</td>
<td>58</td>
<td>75</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>PJ09</td>
<td>71</td>
<td>T</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>PJ10</td>
<td>85</td>
<td>T</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>PJ11</td>
<td>294</td>
<td>T</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>PJ12</td>
<td>312</td>
<td>T</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PJ13</td>
<td>420</td>
<td>T</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>PJ14</td>
<td>127</td>
<td>T</td>
<td>25</td>
<td>9</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>PJ15</td>
<td>355</td>
<td>T</td>
<td>184</td>
<td>14</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>PJ16</td>
<td>290</td>
<td>T</td>
<td>248</td>
<td>64</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>PJ17</td>
<td>212</td>
<td>T</td>
<td>2126</td>
<td>1869</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>PJ18</td>
<td>145</td>
<td>T</td>
<td>993</td>
<td>390</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>PJ19</td>
<td>52</td>
<td>T</td>
<td>>2hr</td>
<td>18</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>circuit</td>
<td>reg</td>
<td>ccx</td>
<td>SATProof (S)</td>
<td>LearnAbs(S)</td>
<td>SATProof (A)</td>
<td>LearnAbs(A)</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>time</td>
<td>itr</td>
<td>abs</td>
<td>time</td>
</tr>
<tr>
<td>RB05 1</td>
<td>313</td>
<td>31</td>
<td>11</td>
<td>10</td>
<td>24</td>
<td>141</td>
</tr>
<tr>
<td>RB09 1</td>
<td>168</td>
<td>T</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>RB10.1</td>
<td>236</td>
<td>T</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>RB10.2</td>
<td>236</td>
<td>T</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>RB10.3</td>
<td>236</td>
<td>T</td>
<td>5</td>
<td>7</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>RB10.4</td>
<td>236</td>
<td>T</td>
<td>8</td>
<td>10</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>RB10.5</td>
<td>236</td>
<td>T</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>RB10.6</td>
<td>236</td>
<td>T</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>RB11.2</td>
<td>242</td>
<td>T</td>
<td>>1hr</td>
<td>-</td>
<td>-</td>
<td>128</td>
</tr>
<tr>
<td>RB14.1</td>
<td>180</td>
<td>T</td>
<td>37</td>
<td>7</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>RB14.2</td>
<td>180</td>
<td>T</td>
<td>>1hr</td>
<td>-</td>
<td>-</td>
<td>1258</td>
</tr>
<tr>
<td>RB15.1</td>
<td>270</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>RB16.1 1</td>
<td>1117</td>
<td>8</td>
<td>7</td>
<td>92</td>
<td>324</td>
<td>8</td>
</tr>
<tr>
<td>RB16.2 4</td>
<td>1113</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>40</td>
<td>61</td>
</tr>
<tr>
<td>RB26 1</td>
<td>608</td>
<td>T</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RB31 2 1</td>
<td>111</td>
<td>T</td>
<td>>1hr</td>
<td>-</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>IUPI</td>
<td>4494</td>
<td>T</td>
<td>mem</td>
<td>1295</td>
<td>18</td>
<td>8</td>
</tr>
</tbody>
</table>
Conclusion

- This work has shown the viability of using machine learning techniques to improve abstraction-based model checking
 - Machine learning techniques help the model checker to efficiently identify the relevant information in the model