EECS 219C: Formal Methods

Syntax-Guided Synthesis
(selected/adapted slides from FMCAD’13 tutorial by R. Alur)

Sanjit A. Seshia
EECS, UC Berkeley
Solving SyGuS

- Is SyGuS same as solving SMT formulas with quantifier alternation?

- SyGuS can sometimes be reduced to Quantified-SMT, but not always
 - Set E is all linear expressions over input vars x, y
 - SyGuS reduces to $\exists a,b,c. \forall X. \varphi [f/ ax+by+c]$
 - Set E is all conditional expressions
 - SyGuS cannot be reduced to deciding a formula in LIA

- Syntactic structure of the set E of candidate implementations can be used effectively by a solver

- Existing work on solving Quantified-SMT formulas suggests solution strategies for SyGuS
SyGuS as Oracle-Guided Learning

Initial examples I

Learning Algorithm

Verification Oracle

Candidate Expression

Counterexample

Fail

Success

Concept class: Set E of expressions

Examples: Concrete input values
CEGIS Example

- Specification: \((x \leq f(x,y)) \land (y \leq f(x,y)) \land (f(x,y) = x \lor f(x,y) = y)\)

- Set E: All expressions built from \(x, y, 0, 1, \text{Comparison, +, If-Then-Else}\)

Examples = \{

Learning Algorithm

Candidate
\(f(x,y) = x\)

Verification Oracle

Example
\((x=0, y=1)\)
CEGIS Example

- Specification: \((x \leq f(x,y)) \land (y \leq f(x,y)) \land (f(x,y) = x \mid f(x,y) = y)\)

- Set E: All expressions built from \(x,y,0,1\), Comparison, +, If-Then-Else

Examples = \{ (x=0, y=1) \}

Candidate
\(f(x,y) = y\)

Example
\((x=1, y=0)\)
CEGIS Example

- Specification: \((x \leq f(x, y)) \land (y \leq f(x, y)) \land (f(x, y) = x \mid f(x, y) = y)\)

- Set \(E\): All expressions built from \(x, y, 0, 1,\) Comparison, +, If-Then-Else

Examples =
- \((x=0, y=1)\)
- \((x=1, y=0)\)
- \((x=0, y=0)\)
- \((x=1, y=1)\)

Candidate ITE \((x \leq y, y, x)\)

Learning Algorithm

Verification Oracle

Success
SyGuS Solutions

- CEGIS approach (Solar-Lezama, Seshia et al)

- Coming up: Learning strategies based on:
 - Enumerative (search with pruning): Udupa et al (PLDI’13)
 - Symbolic (solving constraints): Jha et al (ICSE’10, PLDI’11)
 - Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)
Enumerative Learning

- Find an expression consistent with a given set of concrete examples

- Enumerate expressions in increasing size, and evaluate each expression on all concrete inputs to check consistency

- Key optimization for efficient pruning of search space:
 - Expressions e_1 and e_2 are equivalent if $e_1(a,b)=e_2(a,b)$ on all concrete values $(x=a,y=b)$ in Examples
 - $(x+y)$ and $(y+x)$ always considered equivalent
 - If-Then-Else $(0 \leq x, e_1, e_2)$ considered equivalent to e_1 if in current set of Examples x has only non-negative values
 - Only one representative among equivalent subexpressions needs to be considered for building larger expressions

- Fast and robust for learning expressions with ~ 15 nodes
Symbolic Learning

- Use a constraint solver for both the synthesis and verification steps.

- Each production in the grammar is thought of as a component. Input and Output ports of every component are typed.

- A well-typed loop-free program comprising these components corresponds to an expression DAG from the grammar.
Symbolic Learning

- Start with a library consisting of some number of occurrences of each component.

- Synthesis Constraints:
 - Shape is a DAG, Types are consistent
 - Spec $\varphi[f/e]$ is satisfied on every concrete input values in Examples

- Use an SMT solver (Z3) to find a satisfying solution.

- If synthesis fails, try increasing the number of occurrences of components in the library in an outer loop.
Stochastic Learning

- Idea: Find desired expression \(e \) by probabilistic walk on graph where nodes are expressions and edges capture single-edits

- Metropolis-Hastings Algorithm: Given a probability distribution \(P \) over domain \(X \), and an ergodic Markov chain over \(X \), samples from \(X \)

- Fix expression size \(n \).
 - \(X \) is the set of expressions \(E_n \) of size \(n \).
 - \(P(e) \propto \text{Score}(e) \) (“Extent to which \(e \) meets the spec \(\phi \)”)

\[\text{Score}(e) = \text{Extent to which } e \text{ meets the spec } \phi \]
Stochastic Learning

- Initial candidate expression e sampled uniformly from E_n
- If e works on all examples, return e
- Pick node v in parse tree of e uniformly at random. Replace subtree rooted at e with subtree of same size, sampled uniformly

```
+ 
|   +   |
|   |   |
z  y  z
```

- With probability $\min\{1, \text{Score}(e')/\text{Score}(e)\}$, replace e with e'
- Outer loop responsible for updating expression size n
Benchmarks and Implementation

- Prototype implementation of Enumerative/Symbolic/Stochastic CEGIS

- Benchmarks:
 - Bit-manipulation programs from Hacker’s delight
 - Integer arithmetic: Find max, search in sorted array
 - Challenge problems such as computing Morton’s number

- Multiple variants of each benchmark by varying grammar

- Results are not conclusive as implementations are unoptimized, but offers first opportunity to compare solution strategies
Evaluation: Hacker’s Delight Benchmarks
Evaluation Summary

- Enumerative CEGIS has best performance, and solves many benchmarks within seconds
 - Potential problem: Synthesis of complex constants

- Symbolic CEGIS is unable to find answers on most benchmarks
 - Caveat: Sketch succeeds on many of these

- Choice of grammar has impact on synthesis time
 - When E is set of all possible expressions, solvers struggle

- None of the solvers succeed on some benchmarks
 - Morton constants, Search in integer arrays of size > 4

- Bottomline: Improving solvers is a great opportunity for research!