EECS 219C: Formal Methods
Satisfiability Modulo Theories
Examples Used in Lecture

Sanjit A. Seshia
EECS, UC Berkeley
Equivalence Checking of Program Fragments

int fun1(int y) {
 int x, z;
 z = y;
 y = x;
 x = z;

 return x*x;
}

int fun2(int y) {
 return y*y;
}

SMT formula ϕ
Satisfiable iff programs non-equivalent

\[(z = y \land y_1 = x \land x_1 = z \land \text{ret1} = x_1^2) \land \]
\[(\text{ret2} = y^2) \land \]
\[(\text{ret1} \neq \text{ret2}) \]

What if we use SAT to check equivalence?
Equivalence Checking of Program Fragments

int \textbf{fun1}(\text{int } y) \{
 \text{int } x, z;
 \text{z} = y;
 \text{y} = x;
 \text{x} = z;
 \text{return } x^2;
\}

\text{SMT formula } \phi
\text{Satisfiable iff programs non-equivalent}

(z = y \land y1 = x \land x1 = z \land ret1 = x1^2)
\land
(ret2 = y^2)
\land
(ret1 \neq ret2)

Using SAT to check equivalence (w/ Minisat)
32 bits for y: Did not finish in over 5 hours
16 bits for y: 37 sec.
8 bits for y: 0.5 sec.
Equivalence Checking of Program Fragments

```c
int fun1(int y) {
    int x, z;
    z = y;
    y = x;
    x = z;
    return x*x;
}

int fun2(int y) {
    return y*y;
}
```

SMT formula ϕ'

$$\phi' = (z = y \land y1 = x \land x1 = z \land ret1 = \text{sq}(x1)) \land (ret2 = \text{sq}(y)) \land (ret1 \neq ret2)$$

Using EUF solver: 0.01 sec
Equivalence Checking of Program Fragments

Does EUF still work?
No!
Must reason about bit-wise XOR.

Need a solver for bit-vector arithmetic.

Solvable in less than a sec. with a current bit-vector solver.
Equivalence Checking of Program Fragments

int fun1(int y) {
 int x[2];
 x[0] = y;
 y = x[1];
 x[1] = x[0];

 return x[1]*x[1];
}

int fun2(int y) {
 return y*y;
}

How can we express the equivalence checking problem as an SMT formula with arrays?
Equivalence Checking of Program Fragments

```c
int fun1(int y) {
    int x[2];
    x[0] = y;
    y = x[1];
    x[1] = x[0];
    return x[1]*x[1];
}

int fun2(int y) {
    return y*y;
}
```

SMT formula ϕ

\[
\begin{align*}
 &x_1 = \text{store}(x,0,y) \land y_1 = \text{select}(x_1,1) \\
 &x_2 = \text{store}(x_1,1,\text{select}(x_1,0)) \\
 &\text{ret}_1 = \text{sq}(\text{select}(x_2,1)) \\
 &\text{ret}_2 = \text{sq}(y) \\
 &\text{ret}_1 \neq \text{ret}_2
\end{align*}
\]
EUF

• Example:

\[
\begin{align*}
g(g(g(x))) &= x \\
\land g(g(g(g(g(x))))) &= x \\
\land g(x) &\neq x
\end{align*}
\]
Difference Logic

\[x_1 \geq x_2 \]
\[x_3 \leq 0 \]
\[x_2 + 3 \geq x_1 \]
\[x_1 + 1 \leq x_3 \]
\[x_2 + 1 \geq 0 \]
\[x_4 + 2 \geq 0 \]
\[x_4 \leq x_2 - 2 \]
Theory of Arrays

• Two main axioms: For all A, i, j, d
 – \(\text{select}(\text{store}(A,i,d), i) = d \)
 – \(\text{select}(\text{store}(A,i,d), j) = \text{select}(A,j), \text{if } i \neq j \)

• Decision procedure operates by performing case-splits

• Example:
  ```c
  int a[10];
  int fun3(int i) {
      int j;
      for(j=0; j<10; j++) a[j] = j;
      assert(a[i] <= 5);
  }
  ```
Theory of Arrays

• Two main axioms: For all A, i, j, d
 – select(store(A, i, d), i) = d
 – select(store(A, i, d), j) = select(A, j), if i ≠ j

• Decision procedure operates by performing case-splits

• Example:

\[a[0] = 0 \land a[1] = 1 \land a[2] = 2 \land ... \land a[9] = 9 \land a[i] > 5 \]