Formal Inductive Synthesis -- Theory and Applications

Sanjit A. Seshia

EECS Department
UC Berkeley

EECS 219C
April 27, 2016
Formal Synthesis

- Given:
 - Class of Artifacts C
 - Formal (mathematical) Specification ϕ

- Find $f \in C$ that satisfies ϕ

- Example 1:
 - C: all affine functions f of $x \in \mathbb{R}$
 - ϕ: $\forall x. f(x) \geq x + 42$

- Example 2: SyGuS
Induction vs. Deduction

- **Induction**: Inferring general rules (functions) from specific examples (observations)
 - Generalization

- **Deduction**: Applying general rules to derive conclusions about specific instances
 - (generally) Specialization

- **Learning/Synthesis** can be Inductive or Deductive or a combination of the two
Inductive Synthesis

- Given
 - Class of Artifacts C
 - Set of (labeled) Examples E (or source of E)
 - A stopping criterion Ψ
 - May or may not be formally described

- Find, using only E, an $f \in C$ that meets Ψ

- Example:
 - C: all affine functions f of $x \in \mathbb{R}$
 - $E = \{(0,42), (1, 43), (2, 44)\}$
 - Ψ -- find consistent f
Inductive Synthesis

- **Given**
 - Class of Artifacts C
 - Set of Examples E (or source of E)
 - A stopping criterion Ψ

- **Find using only E an $f \in C$ that meets Ψ**

- **Example:**
 - C: all affine functions f of $x \in \mathbb{R}$
 - $E = \{(0,42), (1, 43), (2, 45)\}$
 - Ψ -- find consistent f
Inductive Synthesis

Example:
- C: all predicates of the form $ax + by \geq c$
- $E = \{(0,42), (1, 43), (2, 45)\}$
- Ψ -- find consistent f

- One such: $-x + y \geq 42$
- Another: $-x + y \geq 0$
- Which one to pick: need to augment Ψ?
"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

- Tom Mitchell [1998]
Machine Learning: Typical Setup

Given:

- Domain of Examples D
- Concept class C
 - Concept is a subset of D
 - C is set of all concepts
- Criterion Ψ (“performance measure”)

Find using only examples from D, $f \in C$ meeting Ψ
“Inductive bias is the set of assumptions required to *deductively* infer a concept from the inputs to the learning algorithm.”

Example:
C: all predicates of the form $ax + by \geq c$
$E = \{(0,42), (1, 43), (2, 45)\}$
Ψ -- find consistent f

Which one to pick: $-x + y \geq 42$ or $-x + y \geq 0$
Inductive Bias resolves this choice
• E.g., pick the “simplest one” (Occam’s razor)
Formal Inductive Synthesis (Initial Defn)

- Given:
 - Class of Artifacts C
 - Formal specification ϕ
 - Domain of examples D

- Find $f \in C$ that satisfies ϕ using only elements of D
 - i.e. no direct access to ϕ, only to elements of D representing ϕ

- Example:
 - C: all affine functions f of $x \in \mathbb{R}$
 - $D = \mathbb{R}^2$
 - ϕ: $\forall x. f(x) \geq x + 42$
Importance

Formal Inductive Synthesis is Everywhere!
- Many problems can be solved effectively when viewed as synthesis

Particularly effective in various tasks in Formal Methods

For the rest of this lecture series, for brevity we will often use “Inductive Synthesis” to mean “Formal Inductive Synthesis”
Inductive Synthesis for Formal Methods

- **Modeling / Specification**
 - Generating environment/component models
 - Inferring (likely) specifications/requirements

- **Verification**
 - Synthesizing verification/proof artifacts such as inductive invariants, abstractions, interpolants, environment assumptions, etc.

- **Synthesis** (of course)
Questions of Interest

- How can inductive synthesis be used to solve other (non-synthesis) problems?
- Is there a theory of formal inductive synthesis distinct from (traditional) machine learning?
- Is there a complexity/computability theory for formal inductive synthesis?
Questions of Interest

- How can inductive synthesis be used to solve other (non-synthesis) problems?
 - Reducing a Problem to Synthesis
- Is there a theory of formal inductive synthesis distinct from (traditional) machine learning?
 - Oracle-Guided Inductive Synthesis (OGIS)
- Is there a complexity/computability theory for formal inductive synthesis?
 - Yes! Can compare different OGIS techniques
Outline for this Lecture

- Examples of Reduction to Synthesis
 - Specification
 - Verification
- Differences between Inductive Synthesis and Machine Learning
- Oracle-Guided Inductive Synthesis
 - Examples, CEGIS
- Theoretical Analysis of CEGIS
 - Properties of Learner
 - Properties of Verifier
Further Reading

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-dac12.html
 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-seshia-pieee15.html

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jha-arxiv15.html
Reductions to Synthesis
Artifacts Synthesized in Verification

- Inductive invariants
- Abstraction functions / abstract models
- Auxiliary specifications (e.g., pre/post-conditions, function summaries)
- Environment assumptions / Env model / interface specifications
- Interpolants
- Ranking functions
- Intermediate lemmas for compositional proofs
- Theory lemma instances in SMT solving
- Patterns for Quantifier Instantiation
- …
Example Verification Problem

- **Transition System**

 - **Init:** I
 \[x = 1 \land y = 1 \]

 - **Transition Relation:** δ
 \[x' = x+y \land y' = y+x \]

- **Property:** $\Psi = \mathsf{G} (y \geq 1)$

- **Attempted Proof by Induction:**
 \[y \geq 1 \land x' = x+y \land y' = y+x \implies y' \geq 1 \]

 - Fails. Need to Strengthen Invariant: Find ϕ s.t.

 \[x = 1 \land y = 1 \implies \phi \]

 \[\phi \land y \geq 1 \land x' = x+y \land y' = y+x \implies \phi' \land y' \geq 1 \]
Example Verification Problem

- Transition System
 - Init: \(I \)
 \[
 x = 1 \land y = 1
 \]
 - Transition Relation: \(\delta \)
 \[
 x' = x + y \land y' = y + x
 \]

- Property: \(\Psi = G (y \geq 1) \)

- Attempted Proof by Induction:
 \[
 y \geq 1 \land x' = x + y \land y' = y + x \implies y' \geq 1
 \]

 \(\forall \) Fails. Need to Strengthen Invariant: Find \(\phi \) s.t.
 \[
 x \geq 1 \land y \geq 1 \land x' = x + y \land y' = y + x \implies x' \geq 1 \land y' \geq 1
 \]

- Safety Verification \(\rightarrow \) Invariant Synthesis
One Reduction from Verification to Synthesis

NOTATION
Transition system $M = (I, \delta)$
Safety property $\Psi = G(\psi)$

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM
Synthesize ϕ s.t.

\[I \Rightarrow \phi \land \psi \]
\[\phi \land \psi \land \delta \Rightarrow \phi' \land \psi' \]
Two Reductions from Verification to Synthesis

NOTATION
Transition system $M = (I, \delta)$, $S =$ set of states
Safety property $\Psi = G(\psi)$

VERIFICATION PROBLEM
Does M satisfy Ψ?

SYNTHESIS PROBLEM #1
Synthesize ϕ s.t.
\[I \Rightarrow \phi \land \psi \]
\[\phi \land \psi \land \delta \Rightarrow \phi' \land \psi' \]

SYNTHESIS PROBLEM #2
Synthesize $\alpha : S \rightarrow \hat{S}$ where $\alpha(M) = (\hat{I}, \hat{\delta})$
s.t.
\[\alpha(M) \text{ satisfies } \Psi \iff M \text{ satisfies } \Psi \hat{\hat{\Psi}} \]
Common Approach for both: Inductive Synthesis

Synthesis of:

- **Inductive Invariants**
 - Choose templates for invariants
 - Infer likely invariants from tests (examples)
 - Check if any are true inductive invariants, possibly iterate

- **Abstraction Functions**
 - Choose an abstract domain
 - Use Counter-Example Guided Abstraction Refinement (CEGAR)
Counterexample-Guided Abstraction Refinement is Inductive Synthesis

SYNTHESIS:
1. System + Property
2. Initial Abstraction Function
3. Generate Abstraction
4. Abstract Model + Property
5. Refine Abstraction Function
6. New Abstraction Function

VERIFICATION:
1. Invoke Model Checker
2. Check Counterexample: Spurious?
3. Counterexample
4. YES
5. Done
6. NO
7. Fail

[Anubhav Gupta, ’06]
CEGAR = Counterexample-Guided Inductive Synthesis (of Abstractions)

INITIALIZE

SYNTHESIZE

- Synthesis Fails

Candidate Artifact

VERIFY

Counterexample

Verification Succeeds

Structure Hypothesis (“Syntax-Guidance”), Initial Examples
Lazy SMT Solving performs Inductive Synthesis (of Lemmas)

SYNTHESIS
- SMT Formula
 - Initial Boolean Abstraction
 - Generate SAT Formula
 - Blocking Clause/Lemma
 - Proof Analysis
 - “Spurious Model”

VERIFICATION
- Invoke SAT Solver
 - SAT (model) → ("Counter-example")
- Invoke Theory Solver
 - UNSAT → Done
 - SAT → Done
Other Examples

- Invariant Generation via ICE Learning [P. Garg & M. Parthasarathy]

and many more…
Reducing Specification to Synthesis

- Formal Specifications difficult for non-experts
- Tricky for even experts to get right!
- Yet we need them!

“A design without specification cannot be right or wrong, it can only be surprising!”
- paraphrased from [Young et al., 1985]

- Specifications are crucial for effective testing, verification, synthesis, …
Reduction of Specification to Synthesis

- **VERIFICATION**: Given (closed) system M, and specification ϕ, does M satisfy ϕ?

- Suppose we don’t have (a good enough) ϕ.

- **SYNTHESIS PROBLEM**: Given (closed) system M, find specification ϕ such that M satisfies ϕ.
 - Is this enough?
Example

Let a and b be atomic propositions.

What linear temporal logic formulas does the above system satisfy?
Reduction of Specification to Synthesis

VERIFICATION: Given (closed) system M, and specification ϕ, does M satisfy ϕ?

SYNTHESIS PROBLEM: Given (closed) system M and class of specifications C, find specification ϕ in C such that M satisfies ϕ.
- C can be defined syntactically (e.g. with a template)
- E.g. $G(_ \Rightarrow X _)$
Reduction of Specification to Synthesis

- **VERIFICATION**: Given (closed) system M, and specification ϕ, does M satisfy ϕ?

- **SYNTHESIS PROBLEM**: Given (closed) system M and class of specifications C, find “tightest” specification ϕ in C such that M satisfies ϕ.

 http://www.eecs.berkeley.edu/~sseshia/pubs/b2hd-jin-tcad15.html

 - Implemented in Breach toolbox by A. Donze
Specification Mining

- Inductive Synthesis of Specifications

- Term coined by Ammons et al., POPL 2002 (?)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html
Two Applications of Inductive Synthesis of Specifications

1. Requirements Mining for Closed-Loop Control Systems

2. Environment Assumptions for Reactive Synthesis [see Wenchao Li thesis]

Relevance to Robotics/Cyber-Physical Systems
Challenges for Verification of Automotive Control Systems

- Closed-loop setting very complex
 - software + physical artifacts
 - nonlinear dynamics
 - large look-up tables
 - large amounts of switching

- Requirements Incomplete/Informal
 - Specifications often created concurrently with the design!
 - Designers often only have informal intuition about what is “good behavior”
 - “shape recognition”
Solution: Requirements Mining

Requirements Expressed in Signal Temporal Logic (STL) [Maler & Nickovic, ‘04]

Value added by mining:

- Mined Requirements become useful documentation
- Use for code maintenance and revision
- Use during tuning and testing

It’s working, but I don’t understand why!
Control Designer’s Viewpoint of the Method

- Tool extracts properties of closed-loop design
- Designer reviews mined requirements
 - “Settling time is 6.25 ms”
 - “Overshoot is 100 units”
 - Expressed in Signal Temporal Logic [Maler & Nickovic, ‘04]
Signal Temporal Logic (STL)

• Extension of Linear Temporal Logic (LTL) and Variant of Metric Temporal Logic (MTL)
 – Quantitative semantics: satisfaction of a property over a trace given real-valued interpretation
 – Greater value \rightarrow more easily satisfied
 – Non-negative satisfaction value \equiv Boolean satisfaction

• Example: “For all time points between 60 and 100, the absolute value of x is below 0.1”

$\square_{[60,100]}(|x| < 0.1)$
CounterExample Guided Inductive Synthesis

[Jin, Donze, Deshmukh, Seshia, HSCC 2013]

Experimental Engine Control Model

Find “Tightest” Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors that do NOT satisfy these requirements?

Settling Time is 5 ms
Overshoot is 5 KPa
Upper Bound on x is 3.6
CounterExample Guided Inductive Synthesis

Experimental Engine Control Model

Find “Tightest” Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Are there behaviors that do NOT satisfy these requirements?

Settling Time is ... ms
Overshoot is ... KPa
Upper Bound on x is ...

Counterexamples
CounterExample Guided Inductive Synthesis

1. Experimental Engine Control Model

Find "Tightest" Properties

Settling Time is ??
Overshoot is ??
Upper Bound on x is ??

Counterexamples

Settling Time is 6.3 ms
Overshoot is 5.6 KPa
Upper Bound on x is 4.1

Are there behaviors that do NOT satisfy these requirements?

Mined Requirement

NO
Experimental Results on Industrial Airpath Controller

[Experimental Engine Control Model]

- Found max overshoot with 7000+ simulations in 13 hours
- Attempt to mine maximum observed settling time:
 - stops after 4 iterations
 - gives answer $t_{\text{settle}} = \text{simulation time horizon (shown in trace below)}$

![Pressure diff. vs. Time graph](image)
Mining can expose deep bugs

• Uncovered a tricky bug
 – Discussion with control designer revealed it to be a real bug
 – Root cause identified as wrong value in a look-up table, bug was fixed

• Duality between spec mining and bug-finding:
 – Synthesizing “tightest” spec could uncover corner-case bugs
 – Looking for bugs ≈ Mine for negation of bug
Theoretical Aspects of Formal Inductive Synthesis
CEGIS = Learning from Examples & Counterexamples

INITIALIZE

LEARNING ALGORITHM

Learning Fails

Candidate Concept

Counterexample

VERIFICATION ORACLE

Learning Succeeds

“Concept Class”, Initial Examples
How is Formal Inductive Synthesis different from (traditional) Machine Learning?
Comparison

[see also, Jha & Seshia, 2015]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Formal Inductive Synthesis</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept/Program Classes</td>
<td>Programmable, Complex</td>
<td>Fixed, Simple</td>
</tr>
<tr>
<td>Learning Algorithms</td>
<td>General-Purpose Solvers</td>
<td>Specialized</td>
</tr>
<tr>
<td>Learning Criteria</td>
<td>Exact, w/ Formal Spec</td>
<td>Approximate, w/ Cost Function</td>
</tr>
<tr>
<td>Oracle-Guidance</td>
<td>Common (can select Oracle)</td>
<td>Rare (black-box oracles)</td>
</tr>
</tbody>
</table>

* Between typical inductive synthesizer and machine learning algo
Formal Inductive Synthesis

- **Given:**
 - Class of Artifacts C -- Formal specification ϕ
 - Domain of examples D
 - Oracle Interface O
 - Set of (query, response) types

- **Find using only O an $f \in C$ that satisfies ϕ**
 - i.e. no direct access to D or ϕ

- **Example:**
 - C: all affine functions f of $x \in \mathbb{R} = D$
 - $O = \{\text{pos-witness, } x \text{ satisfying } \phi\}$
 - ϕ: $\forall x. f(x) \geq x + 42$
Oracle Interface

- Generalizes the simple model of sampling positive/negative examples from a corpus of data
- Specifies WHAT the learner and oracle do
- Does *not* specify HOW the oracle/learner is implemented
Common Oracle Query Types (for trace property ϕ)

- **Positive Witness**: $x \in \phi$, if one exists, else \perp
- **Negative Witness**: $x \notin \phi$, if one exists, else \perp
- **Membership**: Is $x \in \phi$? Yes / No
- **Equivalence**: Is $f = \phi$? Yes / No + $x \in \phi \oplus f$
- **Subsumption/Subset**: Is $f \subseteq \phi$? Yes / No + $x \in f \setminus \phi$
- **Distinguishing Input**: f, $X \subseteq f$
 f' s.t. $f' \neq f \land X \subseteq f'$, if it exists; o.w. \perp
Given:
- Class of Artifacts C -- Formal specification ϕ
- Domain of examples D
- Oracle Interface O
- Set of (query, response) types

Find using only O an $f \in C$ that satisfies ϕ
- i.e. no direct access to D or ϕ

How do we solve this?

Design/Select:
Oracle-Guided Inductive Synthesis (OGIS)

- A dialogue is a sequence of (query, response) confirming to an oracle interface O.

- An OGIS engine is a pair $<L, T>$ where:
 - L is a learner, a non-deterministic algorithm mapping a dialogue to a concept c and query q.
 - T is an oracle/teacher, a non-deterministic algorithm mapping a dialogue and query to a response r.

- An OGIS engine $<L, T>$ solves an FIS problem if there exists a dialogue between L and T that converges in a concept $f \in C$ that satisfies ϕ.

Language Learning in the Limit

[E.M. Gold, 1967]

- Concept = Formal Language
- Class of languages identifiable in the limit if there is a learning procedure that, for each language in that class, given an infinite stream of strings, will eventually generate a representation of the language.

Results:
- Cannot learn regular languages, CFLs, CSLs using just positive witness queries
- Can learn using both positive & negative witness queries (assuming all examples eventually enumerated)
Query-Based Learning

[Queries and Concept Learning, 1988]
[Queries Revisited, 2004]

- First work on learning based on querying an oracle
 - Supports witness, equivalence, membership, subsumption/subset queries
 - **Oracle is BLACK BOX**
 - Oracle determines correctness: No separate correctness condition or formal specification
 - Focus on proving complexity results for specific concept classes

- Sample results
 - Can learn DFAs in poly time from membership and equivalence queries
 - Cannot learn DFAs or DNF formulas in poly time with just equivalence queries

Dana Angluin
Examples of OGIS

- L* algorithm to learn DFAs: counterexample-guided
 - Membership + Equivalence queries

- CEGIS used in SyGuS solvers
 - (positive) Witness + Counterexample/Verification queries

- CEGIS for Hybrid Systems
 - Requirement Mining [HSCC 2013]
 - Reactive Model Predictive Control [HSCC 2015]

- Two different examples:
 - Learning Programs from Distinguishing Inputs [Jha et al., ICSE 2010]
 - Learning LTL Properties for Synthesis from Counterstrategies [Li et al., MEMOCODE 2011]
<table>
<thead>
<tr>
<th>Feature</th>
<th>Formal Inductive Synthesis</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept/Program Classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What can we prove about convergence/complexity of formal inductive synthesis for:

- General concept classes (e.g., recursive languages)
- Different properties of “general-purpose” learners
- Different properties of (non black-box) oracles
Query Types for CEGIS

LEARNER

- Finite memory vs Infinite memory

ORACLE

Concept class: Any set of recursive languages

Positive Witness

\[x \in \phi, \text{ if one exists, else } \perp \]

Equivalence: Is \(f = \phi \)?

Yes / No + \(x \in \phi \oplus f \)

Subset: Is \(f \subseteq \phi \)?

Yes / No + \(x \in f \setminus \phi \)

Type of counter-example given
Questions

- **Convergence**: How do properties of the learner and oracle impact convergence of CEGIS? (learning in the limit for infinite-sized concept classes)

- **Sample Complexity**: For finite-sized concept classes, what upper/lower bounds can we derive on the number of oracle queries, for various CEGIS variants?
Problem 1: Bounds on Sample Complexity
Teaching Dimension

The *minimum* number of (labeled) examples a teacher must reveal to *uniquely* identify any concept from a concept class

[Goldman & Kearns, ‘90, ‘95]
Teaching a 2-dimensional Box

What about N dimensions?
Teaching Dimension

- The \textit{minimum} number of (labeled) examples a teacher must reveal to \textit{uniquely} identify any concept from a concept class

\[TD(C) = \max_{c \in C} \min_{\sigma \in \Sigma(c)} |\sigma| \]

where
- C is a concept class
- c is a concept
- σ is a teaching sequence (uniquely identifies concept c)
- Σ is the set of all teaching sequences
Theorem: $TD(C)$ is lower bound on Sample Complexity

- OGIS: TD gives a lower bound on number of counterexample queries to solve FIS problem
- Finite TD is necessary for termination
 - If C is finite, $TD(C) \leq |C|-1$
- Finding Optimal Teaching Sequence is NP-hard (in size of concept class)
 - Hence also finding optimal query sequence for OGIS
 - But heuristic approach works well ("learning from distinguishing inputs")
- Open Problems: Compute TD for common classes of SyGuS problems

[see Jha & Seshia, 2015]
Problem 2: Convergence of Counterexample-guided loop with positive witness and counterexample/verification queries
Learning $-1 \leq x \leq 1 \land -1 \leq y \leq 1$

($C =$ Boxes around origin)

Arbitrary Counterexamples may not work for Arbitrary Learners
Learning $-1 \leq x, y \leq 1$ from Minimum Counterexamples (dist from origin)
Types of Counterexamples

Assume there is a function $\text{size}: D \rightarrow N$
- Maps each example x to a natural number
- Imposes total order amongst examples

- **CEGIS:** Arbitrary counterexamples
 - Any element of $f \oplus \phi$

- **MinCEGIS:** Minimal counterexamples
 - A least element of $f \oplus \phi$ according to size
 - Motivated by debugging methods that seek to find small counterexamples to explain errors & repair
Assume there is a function $\text{size}: D \rightarrow N$

- **CBCEGIS**: Constant-bounded counterexamples (bound B)
 - An element x of $f \oplus \phi$ s.t. $\text{size}(x) < B$
 - Motivation: Bounded Model Checking, Input Bounding, Context bounded testing, etc.

- **PBCEGIS**: Positive-bounded counterexamples
 - An element x of $f \oplus \phi$ s.t. $\text{size}(x)$ is no larger than that of any positive example seen so far
 - Motivation: bug-finding methods that mutate a correct execution in order to find buggy behaviors
Summary of Results

[Jha & Seshia, SYNT’14; TR’15]

Finite Memory Inductive Synthesis

infinite Memory Inductive Synthesis

CEGIS = MINCEGIS

CBCEGIS

PBCEGIS
Open Problems

- For Finite Domains: What is the impact of type of counterexample and buffer size to store counterexamples on the speed of termination of CEGIS?

- For Specific Infinite Domains (e.g., Boolean combinations of linear real arithmetic): Can we prove termination of CEGIS loop?
Summary

- Formal Synthesis
- Verification by Reduction to Synthesis
- Formal Inductive Synthesis
 - Counterexample-guided inductive synthesis (CEGIS)
 - General framework for solution methods: Oracle-Guided Inductive Synthesis (OGIS)
 - Theoretical analysis
- Lots of potential for future work!