Let’s illustrate this with an example:

\[
(2 \ 3 \ 1 \ 4 \ 5) \\
(1 \ 2 \ -3) \\
(1 \ -2) \\
(-1 \ 4) \\
(-1)
\]
BCP Algorithm (2.1/8)

- Let’s illustrate this with an example:

```
\begin{array}{cccc}
2 & 3 & 1 & 4 & 5 \\
1 & 2 & -3 \\
1 & -2 \\
1 & 4 \\
-1 \\
\end{array}
```

- Conceptually, we identify the first two literals in each clause as the watched ones.
Let's illustrate this with an example:

Conceptually, we identify the first two literals in each clause as the watched ones.

Changing which literals are watched is represented by reordering the literals in the clause (which comes into play later).
Let’s illustrate this with an example:

Conceptually, we identify the first two literals in each clause as the watched ones.

Changing which literals are watched is represented by reordering the literals in the clause (which comes into play later).

Clauses of size one are a special case.
We begin by processing the assignment \(v1 = F \) (which is implied by the size one clause)

\[
\begin{pmatrix}
2 & 3 & 1 & 4 & 5 \\
1 & 2 & -3 \\
1 & -2 \\
-1 & 4
\end{pmatrix}
\]

State: \((v1=F) \)
Pending:
We begin by processing the assignment $v_1 = F$ (which is implied by the size one clause)

To maintain our invariants, we must examine each clause where the assignment being processed has set a watched literal to F.

\[
\begin{align*}
\text{State:} & (v_1=F) \quad \rightarrow \quad (1 \quad 2 \quad -3) \\
\text{Pending:} & \quad \rightarrow \quad (1 \quad -2) \\
& \quad \rightarrow \quad (-1 \quad 4)
\end{align*}
\]
BCP Algorithm (3.2/8)

- We begin by processing the assignment $v1 = F$ (which is implied by the size one clause)

$$(2, 3, 1, 4, 5)$$

State: $(v1=F)$

Pending: $$(1, 2, -3)$$ $$(1, -2)$$ $$(1, 4)$$

- To maintain our invariants, we must examine each clause where the assignment being processed has set a watched literal to F.
- We need not process clauses where a watched literal has been set to T, because the clause is now satisfied and so cannot become implied.
We begin by processing the assignment \(v_1 = F \) (which is implied by the size one clause):

\[
\begin{pmatrix}
2 & 3 & 1 & 4 & 5 \\
1 & 2 & -3 \\
1 & -2 \\
-1 & 4
\end{pmatrix}
\]

To maintain our invariants, we must examine each clause where the assignment being processed has set a watched literal to \(F \).

We need not process clauses where a watched literal has been set to \(T \), because the clause is now satisfied and so can not become implied.

We *certainly* need not process any clauses where neither watched literal changes state (in this example, where \(v_1 \) is not watched).
Now let’s actually process the second and third clauses:

\[
\begin{pmatrix}
2 & 3 & 1 & 4 & 5 \\
1 & 2 & -3 \\
1 & -2 \\
-1 & 4
\end{pmatrix}
\]

State: (v1=F)
Pending:
Now let’s actually process the second and third clauses:

State: (v1=F)
Pending:

For the second clause, we replace v1 with ¬v3 as a new watched literal. Since ¬v3 is not assigned to F, this maintains our invariants.
Now let’s actually process the second and third clauses:

For the second clause, we replace \(v_1 \) with \(\neg v_3 \) as a new watched literal. Since \(\neg v_3 \) is not assigned to \(F \), this maintains our invariants.

The third clause is implied. We record the new implication of \(\neg v_2 \), and add it to the queue of assignments to process. Since the clause cannot again become newly implied, our invariants are maintained.
Next, we process \(\neg v_2 \). We only examine the first 2 clauses.

\[
\begin{align*}
(2 & 3 & 1 & 4 & 5) \\
(-3 & 2 & 1) \\
(1 & -2) \\
(-1 & 4)
\end{align*}
\]

For the first clause, we replace \(v_2 \) with \(v_4 \) as a new watched literal. Since \(v_4 \) is not assigned to \(F \), this maintains our invariants.

The second clause is implied. We record the new implication of \(v_3 \), and add it to the queue of assignments to process. Since the clause cannot again become newly implied, our invariants are maintained.
Next, we process $\neg v_3$. We only examine the first clause.

For the first clause, we replace v_3 with v_5 as a new watched literal. Since v_5 is not assigned to F, this maintains our invariants.

Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Both v_4 and v_5 are unassigned. Let’s say we decide to assign $v_4=T$ and proceed.

Lintao Zhang
Next, we process v4. We do nothing at all.

Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. Only v5 is unassigned. Let’s say we decide to assign v5=F and proceed.
Next, we process v5=F. We examine the first clause.

\[
\begin{align*}
(1 & 2 & 3) \\
(-3 & 1) \\
(1 & -2) \\
(-1 & 4)
\end{align*}
\]

The first clause is implied. However, the implication is v4=T, which is a duplicate (since v4=T already) so we ignore it.

Since there are no pending assignments, and no conflict, BCP terminates and we make a decision. No variables are unassigned, so the problem is sat, and we are done.

Lintao Zhang