EECS 219C: Computer-Aided Verification
Abstraction & Symbolic Model Checking without BDDs

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: Kenneth McMillan

Key Optimizations in (Symbolic) Model Checking

• Abstraction
 – Compute a smaller state graph by “merging states” s.t. if the property holds on the smaller system model, it holds on the larger one

• Symmetry Reduction
 – Group states into equivalence classes by exploiting symmetries in the model

• Compositional Reasoning
 – Compose proofs of correctness of modules to prove the overall system correct
Today’s Lecture

• Abstraction
 – Counter-example guided abstraction refinement (CEGAR)

• Symbolic Model Checking without BDDs
 – Uses SAT instead of BDDs
 – Started with Bounded Model Checking
 – Extended to Unbounded Model Checking
 • Abstraction + BMC
 • Interpolation-based model checking

Abstraction
Abstraction

- Extracting information from a system description that is relevant to proving a property
- Goal: Reduce size of system model

Terminology:
- Original model = Concrete system/model

Abstraction (2)

- Reduce the size of the system model by throwing out information / grouping states
 - If this information is irrelevant to the property of interest (i.e., the property is true on the original model iff it is true on the abstract model) then it is a precise abstraction
 - If the property is true on the original model if it is true on the abstract model, it is a safe abstraction
Example

- Abstractions exhibit more behaviors
- Consider the following properties on the original model and abstraction:
 \[G(\text{go} \rightarrow X \text{ stop}) \quad \quad G F \text{ go} \]

A Simple Form of Abstraction

- Suppose the temporal logic property mentions only a subset of variable \(V' \) of the entire set \(V \)
- Can I use this information to construct a precise abstraction of the original model?
A Simple Form of Abstraction

- Suppose the temporal logic property mentions only a subset of variable V' of the entire set V
- Can I use this information to construct a precise abstraction of the original model?
 - YES. One such method is the “cone of influence” reduction.
 - Transitively propagate syntactic dependences on variables and “delete” all variables not in the transitive closure

Formal Definition

- Abstraction is defined by an abstraction function
- Abstraction function $\alpha : S \rightarrow \hat{S}$
 - S – set of concrete states
 - \hat{S} – set of abstract states
- An abstraction induces an equivalence relation over the concrete states
 - Two concrete states are equivalent if they are mapped to the same abstract state
Formal Definition

- Suppose concrete system is \((S, S_0, R, L)\), and abstract system \((\hat{S}, \hat{S}_0, \hat{R}, \hat{L})\).
- Abstraction function \(\alpha : S \to \hat{S}\)
 - \(S\) – set of concrete states
 - \(\hat{S}\) – set of abstract states
- \(\hat{S}_0 = \{ t | \exists s . S_0(s) \land \alpha(s) = t \}\)
- \(\hat{R}\) = ?
 - How do we algorithmically construct \(\hat{S}_0\) and \(\hat{R}\) ?
 - How are labels assigned to abstract states?

Example of Abstraction

- Our examples in this lecture will be abstractions that extract a subset of state variables
 - State variables partitioned into: visible and invisible
 - An abstract state is an evaluation of visible variables
 - What is \(\alpha\) ?
 - Two concrete states that agree on values of visible variables are grouped together
Example

- Abstractions exhibit more behaviors

Abstraction and Properties

- If an LTL property is true on the abstract model, is it necessarily true on the concrete model?

- If an LTL property is false on the abstract model, is it necessarily false on the concrete model?
Cone-of-influence

• Suppose the property ϕ mentions a subset of variables V' of the total set V
 – Track variables that V' syntactically depend on, add them to V', and iterate until no new variable dependencies generated
 – Resulting V' is the cone-of-influence and its elements are the visible variables
• Problem: Final V' might be as big as V because it only tracks syntactic dependencies
 – But resulting abstraction is precise \rightarrow if ϕ is false in abstract model it is false in concrete model

Example: Cone-of-influence can be conservative

Let a, b, c, g be state variables

What are the expressions for next state variables c' and g'?

Suppose we want to prove $G(c \implies Xc)$. What’s the cone of influence?

If we make g invisible, can we still prove the property?
• what about a and b?
Another approach to Abstraction

- Start with an *arbitrary* subset of variables as visible
 - An option: the ones mentioned in the property
- Construct abstract model, model check it
 - If property passes, we’re done
 - If we get a counterexample, check whether it is a counterexample for the concrete model
 - If yes, we’re done
 - If not (spurious counterex.), we must make more variables visible and repeat (REFINEMENT)

Counter-Example Guided Abstraction-Refinement (CEGAR)

[R. Kurshan, E. Clarke et al.]

- Start with a choice of α
- Construct abstract model, model check it
 - If property passes, we’re done
 - If we get a counterexample, check whether it’s is a counterexample for the concrete model (How do we do this?)
 - If yes, we’re done
 - If not (spurious counterex.), we must refine α and repeat
Intuition about Refinement

- Remember that α partitions the concrete states into equivalence classes
 - C_1, C_2, \ldots, C_k
- A refinement α' can further break up the C_i's
 - States that are equivalent under α' should also be equivalent under α

Formal Definition of Refinement

- α' refines α if
 - $\forall s, t . \alpha'(s) = \alpha'(t) \Rightarrow \alpha(s) = \alpha(t)$
 - $\exists s, t . \alpha'(s) \neq \alpha'(t) \land \alpha(s) = \alpha(t)$

- Given above definition, why will the CEGAR iteration terminate?
Visible/Invisible Abstraction

- The set of variables is partitioned into visible V and invisible I
- Questions:
 - How do we construct the abstract model?
 - Given an arbitrary set of visible variables
 - How do we refine the abstraction?
 - i.e., how do we pick new variables to make visible?
 - We want to pick those that will remove the current spurious counterexample

Constructing Abstract Model

- Simply make all invisible variables take arbitrary values
 - Non-deterministically assigned 0 or 1 on each step
- How does this make model checking more efficient?
Constructing Abstract Model

• Simply make all invisible variables take arbitrary values
 – Non-deterministically assigned 0 or 1 on each step
• How does this make model checking more efficient?
 – Avoids some existential quantification, simplifies transition relation

Refining the Abstraction

• The CEGAR approach is most often used today in conjunction with a technique called Bounded Model Checking
• We will study abstraction-refinement in that context
Bounded Model Checking (BMC)

[Biere, Clarke, Cimatti, Zhu, '99]

• Given
 – A FSM M described by S_0, R
 – A property $G p$ and an integer $k \geq 1$

• Determine
 – Does M generate a counterexample to
 $G p$ of length k transitions or fewer?

This problem can be translated to a SAT problem. How?

Unfolding in BMC

• Unfold the model k times:
 $U_k = R_0 \land R_1 \land \ldots \land R_{k-1}$

• Use SAT solver to check satisfiability of
 $S_0 \land U_k \land E_k$

• A satisfying assignment is a counterexample
 of k steps
Old view on BMC

- Originally introduced as a debugging tool
 - By finding counterexamples
- Proving properties:
 - Only possible if a bound on the diameter of the state graph is known
 - The diameter is the maximum over shortest path lengths between any two states.
 - Worst case is exponential in system description.

BMC + CEGAR

- BMC + Abstraction can prove properties too!
- Here’s how it works:

 Create abstraction A

 Perform (unbounded) model checking on A

 Prove that this abstract counterexample of length k is a concrete counterex. using k-step BMC on M

 Extract information for refinement from refutation

 Why does this terminate?

 (make few variables visible)

 (make more variables visible)

 Property true

 OK

 Counterexample of length k

 Proof fails

 Proof succeeds

 Counterexample
Abstract/Concrete Error Trace

Steps

1. Create abstraction A ✓
2. Model check A ✓
3. Prove that abstract counterexample is a concrete counterexample using BMC
4. Use refutation of abstract counterexample to do refinement
Checking Abstract Counterex.

• Recall: BMC for length k
 – Use SAT solver to check satisfiability of
 \[S_0 \land U_k \land E_k \]
• How do we use this to prove the abstract counterexample of length k also holds for concrete model?

Checking Abstract Counterex.

• Recall: we use BMC for the length k of the abstract counterexample
 – Use SAT solver to check satisfiability of
 \[S_0 \land U_k \land E_k \]
 under the partial assignment corresponding to values of the visible variables
 – If SAT solver reports “SAT” we have a concrete counterexample
 • What is a satisfying assignment?
 – If not, we have a refutation \(\Leftarrow\) proof of unsatisfiability
Refinement

• Given proof of unsatisfiability of
 \[S_0 \land U_k \land E_k \]
 under the partial assignment corresponding to values of the visible variables

• Look at unsatisfiable core of proof
 – Invisible variables that appear in the core indicate why the abstract counterexample is spurious
 – Make those variables visible

Modifying the Abstraction-Refinement Loop

• Insight: Why pick an abstraction to start with?
 – Initial abstraction may not be the best start point
 – Why not do BMC initially and use its results to generate abstractions?
Proof-based Abstraction (PBA)

Pick k

BMC on M at depth k

Cex?

No Cex?

Use refutation to choose abstraction

Unbounded MC on abstraction

False, counterexample of length k'

Increase k to k'

Property true?

OK

Other differences with earlier loop?

Counterexample

Termination of PBA

- Depth k increases at each iteration
- Eventually $k >$ diameter d
- If $k > d$, no counterexample is possible
CEGAR vs. PBA

- Refutation via k-step BMC
 - PBA refutes all concrete counterexamples of up to length k
 - CEGAR refutes only the abstract counterexample of length k
- So PBA does more work in the refutation, but usually results in fewer iterations of the loop

Abstract/Concrete Error Trace

- Abstract trace OK
- Abstract trace spurious
Abstraction and Reachability

- An abstraction expands the set of states reachable from the initial state
 - OVER-APPROXIMATION
- Instead of starting by abstracting states, one can *directly abstract the transition relation*
 - Each time you compute the set of next states, you get an over-approximation of the actual set of next states
 - Gives a way of computing an over-approximation of the set of reachable states

Abstraction using Interpolation

- Abstraction is extracting sufficient/relevant information from a system *to prove a given property*.
- This notion is in some sense closely related to a notion of "interpolant" and a lemma called "Craig's interpolation lemma"
Interpolation Lemma \((\text{Craig, 57})\)

- If \(A \land B = \text{false}\), there exists an **interpolant** \(A'\) for \((A,B)\) such that:
 1. \(A \Rightarrow A'\)
 2. \(A' \land B = \text{false}\)
 3. \(A'\) refers only to common variables of \(A,B\)

- **Example:**
 \(-\ A = p \land q, \ B = \neg q \land r, \ A' = q\)

Interpolants from Proofs \((\text{Pudlak,Krajicek,97})\)

- Interpolant \(A'\) for \(A \land B\):
 \[
 A \Rightarrow A' \\
 A' \land B = \text{false} \\
 A'\text{ refers only to common variables of }A,B
 \]

- Interpolants can be obtained from proofs
 - given a resolution-based refutation (proof of unsatisfiability) of \(A \land B\),
 \[
 A' \text{ can be derived in time linear in the proof}
 \]
Interpolation based Model Checking

• Main Idea: Pose the problem of over-approximating the set of next states as finding an interpolant

\[S_0(v_0) \land R(v_0, v_1) \land R(v_1, v_2) \land \ldots \land R(v_{k-1}, v_k) \land E_k(v_k) \]

What set of states does \(A' \) represent?

1. \(A \Rightarrow A' \)
2. \(A' \land B \) is unsat
Interpolation based MC

For a fixed k:
1. Set Z initially to S_0
2. Do BMC starting from Z for k steps
 - If SAT: have we found a counterexample?
 - If UNSAT, continue
3. Use interpolation to compute over-approximation of next states of Z and add them back into Z
 - Can newly added states lead to error states in $k-1$ steps? In k steps?
4. If Z does not increase
 - We’ve reached a fixed point $Z=P$. Is the property true?
5. Otherwise, back to step 2

Intuition

- A' tells us everything the prover deduced about the image of S_0 in proving it can't reach an error in k steps.
- Hence, A' is in some sense an abstraction of the image relative to the property and the bound k

The fixed point P is an inductive invariant
Inductive Invariant \(P \)

- \(P \) is true in the initial state
 - \(S_0 \Rightarrow P \)
- \(R \) is maintained by the transition relation
 - \(P(s) \land R(s,s') \Rightarrow P(s') \)
- In other words: every reachable state satisfies \(P \)
- The system is deemed to be correct if \(P \land E \) is UNSAT.

Refinement

- The procedure may be inconclusive for a fixed \(k \)
 - May add a state that reaches error in \(k \) steps
 (getting SAT in step 2 with \(Z \neq S_0 \))
- Refinement is just increasing \(k \)
 - How big can \(k \) get?