Today’s Lecture

- Optimizations in Model checking
 - Symmetry Reduction
- Simulation/Bisimulation
Simulation and Bisimulation

Simulation --- Intuition

- Two finite state machines (Kripke structures) M and M'
- M' simulates M if
 - M' can start in a similarly labeled state as M
 - For every step that M takes from s to t, M' can mimic it by stepping to a state with similar label as t
Simulation

- \(M = (S, S_0, R, L) \) and \(M' = (S', S_0', R', L') \)
- A relation \(H \subseteq S \times S' \) is a simulation relation between \(M \) and \(M' \) means that:
 - For all \((s, s') \), if \(H(s, s') \) then:
 - \(L'(s') = L(s) \cap AP' \)
 - For every state \(t \) s.t. \(R(s, t) \) there is a state \(t' \) such that \(R'(s', t') \) and \(H(t, t') \)

- \(M' \) simulates \(M \) if
 - there exists a simulation relation \(H \) between them, and
 - For each \(s_0 \in S_0 \), there exists \(s_0' \in S_0' \) s.t. \(H(s_0, s_0') \)

Example

Atomic propositions: go and stop

Which machine simulates which?
Bisimulation

- M and M’ are bisimulation equivalent (bisimilar) if
 - M can match each step of M’ and vice-versa
 - Note: this is NOT the same as “M simulates M’ and M’ simulates M”

- A relation $H \subseteq S \times S'$ is a bisimulation relation between M and M’ means that:
 - For all (s, s'), if $H(s, s')$ then:
 - $L'(s') = L(s) \cap AP'$
 - For every state t s.t. $R(s, t)$ there is a state t' such that $R'(s', t')$ and $H(t, t')$
 - For every state t' s.t. $R'(s', t')$ there is a state t such that $R(s, t)$ and $H(t, t')$

(Bi)Simulation and (A)CTL*

- If M’ simulates M, then any ACTL* property satisfied by M’ is satisfied by M

- If M’ and M are bisimilar, any CTL* property satisfied by one is also satisfied by the other
Symmetry Reduction

Symmetry

• Many systems have inherent symmetry
 – Overall system might be composed of k identical modules
 – E.g., a multi-processor system with k processors
 – E.g., a multi-threaded program with k threads executing the same code with same inputs
 – Anything with replicated structure

• Question: How can we detect and exploit the symmetry in the underlying state space for model checking?
Symmetry in Behavior

• Given a system with two identical modules
 – Run: s_0, s_1, s_2, \ldots
 – Trace: $L(s_0), L(s_1), L(s_2), \ldots$

 – Each $s_i = (s_{i1}, s_{i2}, \text{rest})$ comprises \textit{values to variables} of both modules 1 and 2
 – If we can interchange these without changing the set of traces of the overall system, then there is symmetry in the system behavior

Exploiting Symmetry

• If a state space is symmetric, we can group states into equivalence classes
 – Just as in abstraction

• Resulting state graph/space is called \textit{“quotient”} graph/space
 – Model check this quotient graph
Quotient (first attempt)

\[M = (S, S_0, R, L) \]

Let \(\equiv \) be an equivalence relation on \(S \)

Assume: \(s \equiv t \iff L(s) = L(t) \)

& \(s \in S_0 \iff t \in S_0 \)

Quotient: \(M' = (S', S'_0, R', L') \)

- \(S' = S/\equiv \) , \(S'_0 = S_0/\equiv \) (states are equivalence classes with respect to \(\equiv \))
- \(R'([s], [t]) \) whenever \(R(s, t) \)
- \(L'([s]) = L(s) \)

Is that definition enough?

Suppose we want to check an invariant:

Does \(M \) satisfy \(\varphi \) ?

Instead if we check:

Does quotient \(M' \) satisfy \(\varphi \) ?

If \(M' \) is constructed using the definition of \(\equiv \) on the previous slide, will the above check generate spurious counterexamples?
Stable Equivalences

Equivalence \equiv is called stable if:

$$R(x, y) \Rightarrow$$

for every s in $[x]$ there exists some t in $[y]$ such that $R(s, t)$

Claim: Suppose \equiv is stable, then:

M satisfies φ iff M' satisfies φ

(Proof idea: show M and M' are bisimilar)

Detecting Symmetry

• Given symmetry expressed as an equivalence relation between states, we know how to exploit it

• How do we detect/compute this equivalence relation?
 – Need to characterize it more formally
Symmetry as Permutation

- Symmetry in the state space can be viewed as “equivalence under permutation”
- Permute the set of states so that the set of traces remains the same
 - A subset of states that remains the same under permutation forms the needed equivalence class
- A representation of all possible such permutations represents symmetry in the system

Automorphisms

A permutation function
\[f : S \rightarrow S \]
is an automorphism if:
\[R(s, t) \Leftrightarrow R(f(s), f(t)) \]

What is an example automorphism for this state space?
Automorphisms

\[f: \begin{align*}
 f(0,0) &= 1,1 & f(1,1) &= 0,0 \\
 f(0,1) &= 0,1 & f(1,0) &= 1,0
\end{align*}\]

\[g: \begin{align*}
 g(0,0) &= 0,0 & g(1,1) &= 1,1 \\
 g(0,1) &= 1,0 & g(1,0) &= 0,1
\end{align*}\]

\[A = \{ f, g, f \circ g, \text{id} \}\]

The set of all automorphisms forms a group!

Equivalence using Automorphisms

Let \(s \cong t \) if there is some automorphism \(f \) such that
\[f(s) = t \quad \text{(and } L(s) = L(t) \land s \in S_0 \iff t \in S_0)\]

The equivalence classes of an automorphism (sets mapped to themselves) are called \textit{orbits}

Claim 1: \(\cong \) is an equivalence
Claim 2: \(\cong \) is stable \quad (why? - HW)
Orbits

\[(0,0), (1,1)\]
\[(0,1), (1,0)\]

Symmetry reduction

Map each state to its representative in the orbit
How Symmetry Reduction works in practice

- A permutation (automorphism) group is *manually* constructed
 - Syntactically specify which modules are identical
- Orbit relation (equivalence relation) automatically generated from this
 - Using fixpoint computation (MC, Sec. 14.3)
- An (lexicographically smallest) element of each equivalence class is picked as its representative
- S_0' and R' generated from orbit relation
- Model checking explores only representative states

Symmetry reduction

- Implemented in many model checkers
 - E.g., SMV, Murφ (finite-state systems), Brutus (security protocols)