EECS 219C: Computer-Aided Verification
Boolean Satisfiability Solving
Part I: Basics

Sanjit A. Seshia
EECS, UC Berkeley

Project Proposals

• Due Monday, September 17 on bSpace
• Instructions will follow
• Meet me next week to discuss project ideas if you haven’t already
Boolean Functions (Formulas) and Propositional Logic

At the core of all Verification Algorithms

• Variables: $x_1, x_2, x_3, \ldots, x_n \in \{0, 1\}$ (or \{false, true\})

• $F(x_1, x_2, x_3, \ldots, x_n) \in \{0,1\}$

• F representable as the output (root) of a circuit (expression DAG) constructed with gates (Boolean operators)
 – Standard Boolean operators:
 And (\land, \cdot), Or ($\lor, +$), Not ($\neg, \,'$)
 – Derived operators: Implies (\to) Iff (\iff)
The Boolean Satisfiability Problem (SAT)

- Given:
 A Boolean formula $F(x_1, x_2, x_3, \ldots, x_n)$

- Can F evaluate to 1 (true)?
 - Is F satisfiable?
 - If yes, return values to x_i's (satisfying assignment, or “model”) that make F true

Why is SAT important?

- Theoretical importance:
 - First NP-complete problem (Cook, 1971)

- Many practical applications:
 - Model Checking
 - Automatic Test Pattern Generation
 - Combinational Equivalence Checking
 - Planning in AI
 - Automated Theorem Proving
 - Software Verification
 - …
My Experience with SAT Solving

Speed-up of 2012 solver over other solvers

Terminology

• Literal

• Clause

• Conjunctive Normal Form (CNF)

• Disjunctive Normal Form (DNF)

• Tautology
 – Complexity of tautology checking for propositional logic?
An Example

• Inputs to SAT solvers are usually represented in CNF

\[(a + b + c) (a' + b' + c) (a + b' + c') (a' + b + c')\]
Why CNF?

- Input-related reason
 - Can transform from circuit to CNF in linear time & space (HOW?)
- Solver-related: Most SAT solver variants can exploit CNF
 - Easy to detect a conflict
 - Easy to remember partial assignments that don’t work (just add ‘conflict’ clauses)
 - Other “ease of representation” points?
- Any reasons why CNF might NOT be a good choice?
Complexity Issues

• **k-SAT**: A SAT problem with input in CNF with at most k literals in each clause
• Complexity for non-trivial values of k:
 – 2-SAT: ?
 – 3-SAT: ?
 – > 3-SAT: ?

2-SAT Algorithm

• **Linear-time algorithm** (Aspvall, Plass, Tarjan, 1979)
 – Think of clauses as implications
 – Think of a graph with literals as nodes
 – Find strongly connected components
 – Variable and its negation should not be in the same component

• Example 1:

 \[(a' + b) (b' + c) (c' + a)\]

• Example 2:

 \[(a' + b) (b' + c) (c' + a) (a + b) (a' + b')\]
3-SAT: Complexity Bounds (circa 2008)

- Obvious upper bound on run-time?
- Best known deterministic upper bound 1.473^n
- Best known randomized upper bound 1.324^n
- Best known lower bound $n^{2.761}$

Worst-Case Complexity
Beyond Worst-Case Complexity

- What we really care about is “typical-case” complexity
- But how can one measure “typical-case”?
- Two approaches:
 - Is your problem a restricted form of 3-SAT? That might be polynomial-time solvable
 - Experiment with (random) SAT instances and see how the solver run-time varies with formula parameters (#vars, #clauses, ...)

Special Cases of 3-SAT

- You already know one: 2-SAT
 - T. Larrabee observed that many clauses in ATPG tend to be 2-CNF
- Another useful class: Horn-SAT
 - A clause is a Horn clause if at most one literal is positive
 - If all clauses are Horn, then problem is Horn-SAT
 - E.g. Application:- Simulation checking between 2 finite-state systems
Horn-SAT

• Can we solve Horn-SAT in polynomial time? How? [homework]
 – Hint: view clauses as implications.

• Variants:
 – Negated Horn-SAT: Clauses with at most one literal negative
 – Renamable Horn-SAT: Doesn’t look like a Horn-SAT problem, but turns into one when polarities of some variables are flipped

Phase Transitions in k-SAT

• Consider a fixed-length clause model
 – k-SAT means that each clause contains exactly k literals

• Let SAT problem comprise \(m \) clauses and \(n \) variables
 – Randomly generate the problem for fixed \(k \) and varying \(m \) and \(n \)

• Question: How does the problem hardness vary with \(m/n \) ?
3-SAT Hardness

As \(n \) increases, hardness transition grows sharper.

Transition at \(m/n \approx 4.3 \)
Threshold Conjecture

- For every k, there exists a c^* such that
 - For $m/n < c^*$, as $n \to \infty$, problem is satisfiable with probability 1
 - For $m/n > c^*$, as $n \to \infty$, problem is unsatisfiable with probability 1
- Conjecture proved true for $k=2$ and $c^*=1$
- For $k=3$, current status is that c^* is in the range $3.42 - 4.51$

The (2+p)-SAT Model

- We know:
 - 2-SAT is in P
 - 3-SAT is in NP
- Problems are (typically) a mix of binary and ternary clauses
 - Let $p \in [0,1]$
 - Let problem comprise $(1-p)$ fraction of binary clauses and p of ternary
 - So-called (2+p)-SAT problem
Experimentation with random (2+p)-SAT

- When $p < \sim 0.41$
 - Problem behaves like 2-SAT
 - Linear scaling
- When $p > \sim 0.42$
 - Problem behaves like 3-SAT
 - Exponential scaling

- Nice observations, but don’t help us predict behavior of problems in practice

Backbones and Backdoors

- **Backbone** [Parkes; Monasson et al.]
 - Subset of literals that must be true in every satisfying assignment (if one exists)
 - Empirically related to hardness of problems
- **Backdoor** [Williams, Gomes, Selman]
 - Subset of variables such that once you’ve given those a suitable assignment (if one exists), the rest of the problem is poly-time solvable
 - Also empirically related to hardness
- But no easy way to find such backbones / backdoors! 😞
A Classification of SAT Algorithms

- **Davis-Putnam (DP)**
 - Based on resolution
- **Davis-Logemann-Loveland (DLL/DPLL)**
 - Search-based
 - Basis for current most successful solvers
- **Stalmarck’s algorithm**
 - More of a “breadth first” search, proprietary algorithm
- **Stochastic search**
 - Local search, hill climbing, etc.
 - Unable to prove unsatisfiability (incomplete)

Next Class

- **Quick review of SAT algorithms; how DPLL/DLL algorithm works in current SAT solvers**