Review these notes along with the lecture slides.

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be any DFA with alphabet \(\Sigma \). Let \(x, y, z \in \Sigma^* \) and \(p, q \in Q \).

\(M \) defines an equivalence relation \(\sim_M \) over \(\Sigma^* \) as follows:

\[
x \sim_M y \iff M \text{ ends in the same state on both } x \text{ and } y
\]

Note that there is one equivalence class of \(\sim_M \) for every state in \(Q \); thus the number of equivalence classes of \(\sim_M \) is finite.

For brevity let us denote the language recognized by \(M \), \(L(M) \), by \(L \). Using \(L \) we can define another equivalence relation \(\sim_L \) over \(\Sigma^* \) as follows

\[
x \sim_L y \iff \forall z \in \Sigma^*, xz \in L \iff yz \in L
\]

We use \(\sim_L \) to make the following definition:

Definition 1 Two strings (words) \(x \) and \(y \) in \(\Sigma^* \) are indistinguishable by \(L \) iff \(x \sim_L y \).

Otherwise, we say that \(x \) and \(y \) are distinguishable.

We first prove the following lemma.

Lemma 1 Each equivalence class of \(\sim_M \) is contained in some equivalence class of \(\sim_L \).

Proof: Suppose \(x \sim_M y \). Let \(M \) end in the state \(q \) on both \(x \) and \(y \). For any string \(z \), let \(\delta(q, z) \) denote the state reached from \(q \) on \(z \). Thus, \(M \) ends in the same state \(\delta(q, z) \) on both \(xz \) and \(yz \). So, \(xz \in L \iff yz \in L \), and therefore \(x \sim_L y \).

\[\blacksquare\]
Using the above lemma, we can also prove that the number of equivalence classes of \(\sim_L \) is also finite. (Use a proof by contradiction: if there is an equivalence class \(C \) of \(\sim_L \) which does not contain an equivalence class of \(\sim_M \), then what happens to the classes of \(\sim_M \) corresponding to states reached on strings in \(C \)?)

We can now prove a version of the Myhill-Nerode theorem, stated below.

Theorem 2 Let \(L \) be a regular language over alphabet \(\Sigma \). The equivalence relation \(\sim_L \) defines a DFA \(M_L \) recognizing \(L \), where the states of \(M_L \) are the equivalence classes of \(\sim_L \). \(M_L \) is the unique, minimal DFA for language \(L \) (up to isomorphism).

Proof: (Proof idea: proof by construction)

Let \([x]_L\) denote the equivalence class of string \(x \) under \(\sim_L \).

Define \(M_L = (Q', \Sigma, \delta', q'_0, F') \) where:

\[
\begin{align*}
Q' &= \{[x]_L \mid x \in \Sigma^*\} \\
\delta'([x]_L, a) &= [xa]_L \\
q'_0 &= [\epsilon]_L \\
F' &= \{[x]_L \mid x \in L\}
\end{align*}
\]

We now show in turn that

- \(M_L \) recognizes \(L \)
- \(M_L \) is minimal
- \(M_L \) is unique (up to isomorphism - a renaming of states)

\(M_L \) recognizes \(L \). On receiving input \(x \), \(M_L \) moves to the state \([x]_L\) (can prove this more formally by induction on the length of \(x \)). Thus, if \(x \in L \), \(M_L \) moves to a state in \(F' \) and therefore it accepts. If \(x \not\in L \), by definition of \(\sim_L \), \(M_L \) will not move to a state in \(F' \).

\(M_L \) is minimal. We next show that \(M_L \) has the minimum number of states amongst all DFAs for \(L \). To see this, let \(M \) be any other DFA recognizing \(L \). Recall that each equivalence class of \(\sim_M \) corresponds to a state of \(M \). By Lemma 1, every state of \(M \) (equivalence class of \(\sim_M \)) is contained in some \([x]_L\). Further, every \([x]_L\) contains some equivalence class of \(\sim_M \). Therefore, the number of equivalence classes of \(\sim_M \) is at least the number of equivalence classes of \(\sim_L \). Hence, \(M \) has at least as many states as \(M_L \).
M_L is the unique minimal DFA. Let M and M_L be two DFAs recognizing L and have the same number of states. Then, we argue that the relations \sim_M and \sim_L must be identical. Suppose not: i.e., there exist strings x and y s.t. $x \sim_L y$, but $x \not\sim_M y$. The latter implies that the equivalence class $[x]_L$ is partitioned by \sim_M into at least two equivalence classes of \sim_M. Since every $[x]_L$ contains some equivalence class of \sim_M, this implies that \sim_M has more equivalence classes than \sim_L, or that M has more states than M_L, a contradiction. Thus, the relations \sim_M and \sim_L are identical, and hence there is a one-to-one correspondence between states of M and M_L. It is now easy to see that even the transitions correspond, as follows: For each state q of M, let x_q denote any string on which M ends in q. In other words, we can define q to be the equivalence class of x_q with respect to \sim_M; $q = [x_q]_M$. If δ_M is the transition function of M, note that for any $a \in \Sigma$, $\delta_M(q, a) = [x_q a]_M$. Similarly, by construction of M_L, $\delta_L([x_q]_L, a) = [x_q a]_L$. Since the equivalence classes of M and M_L coincide, this implies that $[x_q]_L = [x_q]_M$ and $[x_q a]_L = [x_q a]_M$ for all strings x_q and symbols a; in other words, all transitions of M and M_L coincide.

Thus, M_L is the unique, minimal DFA for L, up to isomorphism.

Table Filling Algorithm

We give a detailed description of the Table-Filling Algorithm below.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the input DFA.

1. Remove all states from Q that are unreachable from q_0. For convenience, we continue to refer to the resulting set of states as Q.

2. Initialize a table of all unordered pairs of states of M by leaving all entries unmarked.

3. For every pair (p, q) where $p \in F$ and $q \not\in F$, mark (p, q) to be distinguishable; viz., as a “d”.

4. Repeat until no new entries are marked “d”:

5. For every pair of distinct states (p, q) and every $\sigma \in \Sigma$:

\[M_L \]
6. If \((\delta(p, \sigma), \delta(q, \sigma))\) is marked “d”, then mark \((p, q)\) as “d”.

7. For each state \(q\), define \([q]\) as the set of states \(\{p \mid (p, q)\) is not marked “d”\}.

8. Construct a new DFA \(M' = (Q', \Sigma, \delta', q'_0, F')\) where:
 \(Q' = \{[q] \mid q \in Q\}\)
 \(\delta'([q], \sigma) = [\delta(q, \sigma)]\)
 \(q'_0 = [q_0]\)
 \(F' = \{[q] \mid q \in F\}\)

9. The algorithm’s output is \(M'\).