CS 172: Computability and Complexity

Equivalence of CFGs and PDAs & CFL Pumping Lemma

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: L.von Ahn, L. Blum, M. Blum
Formal Definition of **Acceptance**

PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, F) \) accepts a word \(w \in \Sigma^* \) where \(w = w_1w_2w_3 \ldots w_m \) with \(w_i \in \Sigma_\epsilon \) if there exists a sequence

\[
(q_0, s_0) \rightarrow (q_1, s_1) \rightarrow (q_2, s_2) \rightarrow \ldots \rightarrow (q_m, s_m)
\]

where

- \(s_i \in \Gamma^* \) (represent the stack), with \(s_0 = \epsilon \),
- \(q_m \in F \),
- \((q_{i+1}, b) \in \delta(q_i, w_{i+1}, a)\)

where \(s_i = at \) and \(s_{i+1} = bt \), \(a, b \in \Gamma_\epsilon \), \(t \in \Gamma^* \)
Theorem

Suppose \(L \) is generated by a CFG \(G = (V, \Sigma, R, S) \)

Construct \(P = (Q, \Sigma, \Gamma, \delta, q, F) \) that recognizes \(L \)

A Language is generated by a CFG

\[\iff \]

It is recognized by a PDA
A Language is generated by a CFG
⇒
It is recognized by a PDA

\[\varepsilon, \varepsilon \rightarrow S\$ \]

\[q_0 \]

\[\varepsilon, A \rightarrow w \text{ for rule } A \rightarrow w \]

\[a,a \rightarrow \varepsilon \text{ for terminal } a \]

\[\varepsilon, \$ \rightarrow \varepsilon \]

\[q_{\text{loop}} \]

\[\varepsilon, \varepsilon \rightarrow S\$ \]

\[q_f \]
S \rightarrow aTb
T \rightarrow Ta \mid \varepsilon
Theorem

Suppose PDA $P = (Q, \Sigma, \Gamma, \delta, q, F)$ recognizes L
Construct CFG $G = (V, \Sigma, R, S)$ that generates L

A Language is generated by a CFG
\iff
It is recognized by a PDA
Proof Ideas

- \(A_{pq} = \) variable generating all \(x \) that takes \(P \) from \((p, \varepsilon)\) to \((q, \varepsilon)\)

- Formal construction:
 - \(V = \{ A_{pq} \mid p, q \in Q \} \)
 - \(S = A_{q0qf} \)
 - Defining \(R \):

 Intuition: Derivations correspond to computations of \(P \);
 There are two cases for a derivation from \(A_{pq} \)
 1. Stack is empty only at the beginning and end of the derivation from \(A_{pq} \)
 2. Stack becomes empty somewhere in between
Case 1

\[A_{pq} \rightarrow aA_{rs}b \]

Case 2

\[A_{pq} \rightarrow A_{pr}A_{rq} \]
Recap of Proof Ideas

- $A_{pq} =$ variable generating all x that takes P from (p, ε) to (q, ε)

- Formal construction:
 - $V = \{ A_{pq} \mid p, q \in Q \}$
 - $S = A_{q0qf}$
 - R defined as follows:
 - $A_{pp} \rightarrow \varepsilon \quad \forall p \in Q$
 - $A_{pq} \rightarrow a A_{rs} b \quad \forall p, q, r, s \in Q$
 - $s.t. (r, t) \in \delta(p, a, \varepsilon)$
 - $(q, \varepsilon) \in \delta(s, b, t)$
 - $A_{pq} \rightarrow A_{pr} A_{rq} \quad \forall p, q, r \in Q$

[Proof sketched on whiteboard, see textbook for details]
CFL Pumping Lemma

Let L be a context-free language

Then there exists p such that for all $w \in L$ and $|w| \geq p$

we can write $w = uvxyz$, where:

1. $uv^i xy^i z \in L$ for any $i \geq 0$
2. $|vy| > 0$
3. $|vxy| \leq p$
“Surgery” on Parse Trees

Idea: If w is long enough, then any parse tree for w must have a path that contains a variable more than once