CS 172: Computability and Complexity Pushdown Automata & Equivalence with CFGs

> Sanjit A. Seshia EECS, UC Berkeley

Acknowledgments: L.von Ahn, L. Blum, M. Blum

Chomsky Normal Form

A CFG is in Chomsky Normal Form (CNF) if every rule is in one of the following three forms:

 $S \rightarrow \varepsilon$ $A \rightarrow BC$ B, C are variables $\neq S$ $A \rightarrow a$ a is a terminal

(S is the start variable; A is *any variable,* including S)

Theorem: Any CFG can be converted into an equivalent CFG (generating the same CFL) in Chomsky Normal Form (proof done on the board – read Sipser Thm 2.9)

Finite Automaton

Pushdown Automaton

Informal Definition of Acceptance

- A pushdown automation accepts if, after reading the entire input, it ends in an accept state
 - Sometimes: (with an empty stack)

Definition: A (non-deterministic) PDA is a tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

- Q is a finite set of states
- **Σ** is the input alphabet
- **Γ** is the stack alphabet
- $\delta: Q \times \boldsymbol{\Sigma}_{\!\epsilon} \times \boldsymbol{\Gamma}_{\!\epsilon} \! \to 2 \stackrel{Q \times \boldsymbol{\Gamma}_{\!\epsilon}}{\to}$

(non-determinism)

- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

2^S is the set of subsets of S
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}, \ \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$$

Formal Definition of Acceptance PDA P = (Q, Σ , Γ , δ , q_0 , F) accepts a word w $\in \Sigma^*$ where $w = w_1 w_2 w_3 \dots w_m$ with $w_i \in \Sigma_{\varepsilon}$ if *there exists* a sequence $(q_0, s_0) \rightarrow (q_1, s_1) \rightarrow (q_2, s_2) \rightarrow \dots \rightarrow (q_m, s_m)$ where $s_i \in \Gamma^*$ (represent the stack), with $s_0 = \varepsilon$, $q_m \in F$, $(q_{i+1}, b) \in \delta(q_i, w_{i+1}, a)$ where s_i = at and s_{i+1} = bt , a,b $\in \Gamma_{\scriptscriptstyle \! S},$ t $\in \Gamma^{\! *}$

$$\begin{split} \mathsf{Q} &= \{\mathsf{q}_0, \, \mathsf{q}_1, \, \mathsf{q}_2, \, \mathsf{q}_3\} \qquad \boldsymbol{\Sigma} = \{0, 1\} \qquad \boldsymbol{\Gamma} = \{\$, 0, 1\} \\ &\delta : \, \mathsf{Q} \times \boldsymbol{\Sigma}_{\epsilon} \times \boldsymbol{\Gamma}_{\epsilon} \to 2^{|\mathsf{Q} \times \boldsymbol{\Gamma}_{\epsilon}} \\ &\delta(\mathsf{q}_1, 1, 0) = \{ \; (\mathsf{q}_2, \epsilon) \; \} \qquad \delta(\mathsf{q}_2, 1, 1) = \varnothing \end{split}$$

EVEN-LENGTH PALINDROMES $\Sigma = \{a, b, c, ..., z\}, \sigma \in \Sigma$

Theorem

A Language is generated by a CFG ⇔ It is recognized by a PDA

Theorem

A Language is generated by a CFG \Rightarrow It is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ , R, S) Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L Intuition (warning: not a formal proof!) Map a derivation in the CFG G to an accepting sequence for the PDA P Let $w \in L(G)$

There is a derivation in G:

 $S \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \ldots \rightarrow \alpha_{m-1} \rightarrow w \text{ where } \alpha_i \in (\Sigma \cup V)^*$

We map it to an accepting sequence

 $(q_0,\,s_0) \not \rightarrow (q_1,\,s_1) \not \rightarrow \ldots (q_2,\,s_2) \not \rightarrow \ldots \not \rightarrow (q_m,\,s_m) \not \rightarrow (q_f,\,s_f)$ where

$$q_1 = q_2 = ... = q_m = q_{loop}$$
, $q_f \in F$,
 $s_0 = S$, $s_i = \alpha_i$ ($1 \le i \le m$)

 s_i is obtained from s_{i-1} (1 $\leq i \leq m$) by using substitution at corresponding step of the derivation and matching terminals on the top of the stack with the input

(see picture on slide 16) 14

S. A. Seshia

Suppose L is generated by a CFG G = (V, Σ , R, S)

Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L

(1) Place the marker symbol \$ and the start variable S on the stack

(2) **Repeat** the following steps forever:

(a) If top of stack is a variable, nondeterministically select rule that matches the variable and push result into the stack

(b) If top of stack is a terminal, read next symbol from input and compare it to terminal. If different, reject.
(c) If top of stack is \$, then enter accept state. Accept if the input has all been read.

Next:

A Language is generated by a CFG \Rightarrow It is recognized by a PDA

Next Steps

 Read Sipser 2.3 in preparation for next lecture