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Chomsky Normal Form

A CFG is in Chomsky Normal Form (CNF) if every rule
IS In one of the following three forms:

S =2 ¢
A > BC B, C are variables # S
A -2 a a is a terminal

(S is the start variable; A is any variable, including S)

Theorem: Any CFG can be converted into an
equivalent CFG (generating the same CFL) in

Chomsky Normal Form
(proof done on the board — read Sipser Thm 2.9)
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Finite Automaton

FINITE
STATE
CONTROL

INPUT
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Pushdown Automaton

FINITE
STATE
CONTROL

INPUT

STACK
(Last in,
first out)
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PUSHDOWN AUTOMATON EXAMPLE
input pop push

What happens if

the input is 001?
STACK



Informal Definition of Acceptance

* A pushdown automation accepts If,
after reading the entire input, it ends in an
accept state

« Sometimes: (with an empty stack)
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Definition: A (non-deterministic) PDA is a tuple

P=
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(Q, 2, T, 9, qy, F), where:

Q is a finite set of states

2 is the input alphabet

I" is the stack alphabet

0:QAxE xI —2axT (non-determinism)
do € Q is the start state

F — Qis the set of accept states

2S is the set of subsets of S
2. =2u{e}, I',=T U {¢g}



Formal Definition of Acceptance
PDAP=(Q, X%, T, 9, q, F) acceptsawordw € &

where w = W,W,W,. . .w_, withw, € X,
If there exists a sequence

(do> Sp) 2 (A4, 81) 2 (A2, S2) 2 --- 2 (Am» Sm)
where

s; € I (represent the stack), with s, = &,
Om € F,

(0,1, b) € 0(q;, Wi+, Q)
wheres,=atands,_ ,=bt,abel,tel”
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~@==@D 0
l1,0—>£
&y — &
@@

Q={qyp, 9192943} Z={0,1} = {$,0,1}
0:QAx X xI, — 20axT
6(q15150) = { (q2!£) } 5(C|2,1,1) =
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EVEN-LENGTH PALINDROMES

Y={a,b,c,...,z2},ceX

»0 L @D

l£,£—>£
£$—>£
0,0 — &
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Build a PDA to recognize

L={abick|i,jk=20and (i=jori=Kk)}
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C,E — &
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Theorem

A Language is generated by a CFG
=
It is recognized by a PDA
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Theorem

A Language is generated by a CFG

=

It is recognized by a PDA

Suppose L is generated bya CFG G =(V, £, R, S)
Construct P=(Q, £, I, 9, q, F) that recognizes L
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Intuition (warning: not a formal proof!)

Map a derivation in the CFG G to

an accepting sequence for the PDA P
Letw € L(G)

There is a derivation in G:
S220,20=2>...2d0,,P2PW wherea, € (ZUV)

We map it to an accepting sequence

(Qos So) 2 (A1, S1) 2--- (A2, S2) 2 -+ 2 (Amy Sm) 2 (G, S¢)
where
oF =QQ=---=qm=quop=qf€F=
s; is obtained from s, (1 <i < m) by using substitution at
corresponding step of the derivation and matching
terminals on the top of the stack with the input
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Suppose L is generated bya CFG G =(V, £, R, S)
Construct P=(Q, £, I, 9, q, F) that recognizes L

(1) Place the marker symbol $ and the start
variable S on the stack

(2) Repeat the following steps forever:

(a) If top of stack is a variable, non-
deterministically select rule that matches
the variable and push result into the stack

(b) If top of stack is a terminal, read next
symbol from input and compare it to
terminal. If different, reject.

(c) If top of stack is $, then enter accept
state. Accept if the input has all been read.
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#

£, — S 1
e,A—-wforruleA —->w
qloop .
a,a — € for terminal a
£$— £

Note: RHS is a string

(non-std notation just
S. A. Seshia for intuition)
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eT > &
a,a— &
b,b - &

£,€—a

17



S. A. Seshia

Next:

A Language is generated by a CFG
p—
It is recognized by a PDA
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Next Steps

» Read Sipser 2.3 in preparation for next
lecture
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