CS 172: Computability and Complexity

Pushdown Automata & Equivalence with CFGs

Sanjit A. Seshia
EECS, UC Berkeley

Acknowledgments: L. von Ahn, L. Blum, M. Blum
Chomsky Normal Form

A CFG is in Chomsky Normal Form (CNF) if every rule is in one of the following three forms:

- $S \rightarrow \epsilon$
- $A \rightarrow B \ C$ \ (B, C are variables $\neq S$)
- $A \rightarrow a$ \ (a is a terminal)

(S is the start variable; A is any variable, including S)

Theorem: Any CFG can be converted into an equivalent CFG (generating the same CFL) in Chomsky Normal Form

(proof done on the board – read Sipser Thm 2.9)
Finite Automaton
Pushdown Automaton

FINITE STATE CONTROL

INPUT

STACK (Last in, first out)
PUSHDOWN AUTOMATON EXAMPLE

What happens if the input is 001?
Informal Definition of *Acceptance*

• A pushdown automation accepts if, after reading the entire input, it ends in an accept state
 • Sometimes: (with an empty stack)
Definition: A (non-deterministic) PDA is a tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

- Q is a finite set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- $\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow 2^{Q \times \Gamma_\varepsilon}$ (non-determinism)
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

2^S is the set of subsets of S

$\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$, $\Gamma_\varepsilon = \Gamma \cup \{\varepsilon\}$
Formal Definition of Acceptance

PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a word $w \in \Sigma^*$ where $w = w_1 w_2 w_3 \ldots w_m$ with $w_i \in \Sigma_{\varepsilon}$ if there exists a sequence

$$(q_0, s_0) \rightarrow (q_1, s_1) \rightarrow (q_2, s_2) \rightarrow \ldots \rightarrow (q_m, s_m)$$

where
- $s_i \in \Gamma^*$ (represent the stack), with $s_0 = \varepsilon$,
- $q_m \in F$,
- $(q_{i+1}, b) \in \delta(q_i, w_{i+1}, a)$

where $s_i = at$ and $s_{i+1} = bt$, $a, b \in \Gamma_{\varepsilon}$, $t \in \Gamma^*$
\[Q = \{ q_0, q_1, q_2, q_3 \} \quad \Sigma = \{ 0,1 \} \quad \Gamma = \{ $,0,1 \} \]

\[\delta : Q \times \Sigma_\epsilon \times \Gamma_\epsilon \rightarrow 2^{Q \times \Gamma_\epsilon} \]

\[\delta(q_1,1,0) = \{ (q_2,\epsilon) \} \quad \delta(q_2,1,1) = \emptyset \]
EVEN-LENGTH PALINDROMES

\[\Sigma = \{a, b, c, \ldots, z\}, \sigma \in \Sigma \]
Build a PDA to recognize
\[L = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and } (i = j \text{ or } i = k) \} \]
Theorem

A Language is generated by a CFG
⇔
It is recognized by a PDA
Theorem

A Language is generated by a CFG
⇒
It is recognized by a PDA

Suppose L is generated by a CFG $G = (V, \Sigma, R, S)$
Construct $P = (Q, \Sigma, \Gamma, \delta, q, F)$ that recognizes L
Intuition (warning: not a formal proof!)

Map a derivation in the CFG G to an accepting sequence for the PDA P

Let \(w \in L(G) \)

There is a derivation in G:
\[
S \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \ldots \rightarrow \alpha_{m-1} \rightarrow w
\]
where \(\alpha_i \in (\Sigma \cup V)^* \)

We map it to an accepting sequence
\[
(q_0, s_0) \rightarrow (q_1, s_1) \rightarrow \ldots (q_2, s_2) \rightarrow \ldots \rightarrow (q_m, s_m) \rightarrow (q_f, s_f)
\]
where
\[
q_1 = q_2 = \ldots = q_m = q_{\text{loop}}, q_f \in F, \\
s_0 = S\$, $ s_i = \alpha_i\$ (1 \leq i \leq m) \\
s_i \text{ is obtained from } s_{i-1} (1 \leq i \leq m) \text{ by using substitution at corresponding step of the derivation and matching terminals on the top of the stack with the input}
\]

(see picture on slide 16)
Suppose L is generated by a CFG $G = (V, \Sigma, R, S)$

Construct $P = (Q, \Sigma, \Gamma, \delta, q, F)$ that recognizes L

(1) Place the marker symbol $\$ and the start variable S on the stack

(2) Repeat the following steps forever:

(a) If top of stack is a variable, non-deterministically select rule that matches the variable and push result into the stack

(b) If top of stack is a terminal, read next symbol from input and compare it to terminal. If different, reject.

(c) If top of stack is $\$$, then enter accept state. Accept if the input has all been read.
\[\epsilon, \epsilon \rightarrow S\$$\]
\[\epsilon, A \rightarrow w \text{ for rule } A \rightarrow w \]
\[a, a \rightarrow \epsilon \text{ for terminal } a \]

Note: RHS is a string (non-std notation just for intuition)
$S \rightarrow aTb$

$T \rightarrow Ta \mid \varepsilon$

\[\varepsilon, \varepsilon \rightarrow \$\]

\[\varepsilon, \varepsilon \rightarrow S\]

\[\varepsilon, \varepsilon \rightarrow \varepsilon, S \rightarrow \varepsilon\]

\[\varepsilon, \varepsilon \rightarrow \varepsilon, T \rightarrow a\]

\[\varepsilon, T \rightarrow \varepsilon, a, a \rightarrow \varepsilon\]

\[b, b \rightarrow \varepsilon\]
Next:

A Language is generated by a CFG
⇒
It is recognized by a PDA
Next Steps

• Read Sipser 2.3 in preparation for next lecture