What is Minimization?

Minimized DFA for language L

= DFA with fewest states that recognizes L

Also called minimal DFA
Why is Minimization Important?

DFAs are how computers manipulate regular languages (expressions)

DFA size determines space/time efficiency

IS THIS MINIMAL?

NO
HOW ABOUT THIS?

YES

Equivalent DFAs
Main Result of this Lecture

For every regular language L, there exists a unique, minimal DFA that recognizes L
• uniqueness up to re-labeling of states

Words \leftrightarrow States

• Let DFA $M = (Q, \Sigma, \delta, q_0, F)$
• Each word w in Σ^* corresponds to a unique state in Q
 – The ending state of M on w
• Given $x, y \in \Sigma^*$
 – $x \sim_M y$ iff M ends in the same state on both x and y
 – \sim_M is an equivalence relation (why?)
 – How many equivalence classes are there?
Example:
Is $1 \sim_M 11$? $10 \sim_M 00$?

Indistinguishable Words/Strings

- Let DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize L
- Given $x, y \in \Sigma^*$
 - $x \sim_L y$ (x and y are indistinguishable) iff
 $\forall z \in \Sigma^*, xz \in L$ iff $yz \in L$

 Compare with
 - $x \sim_M y$ iff
 M ends in the same state on both x and y
Example:
What are indistinguishable words?

Let DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize L

Given $x, y \in \Sigma^*$

- $x \sim_L y$ (x and y are indistinguishable) iff
 $\forall z \in \Sigma^*, xz \in L$ iff $yz \in L$

- $x \sim_M y$ iff
 M ends in the same state on both x and y

- **True or False:**
 - If $x \sim_M y$ then $x \sim_L y$ **TRUE**
 - If $x \sim_L y$ then $x \sim_M y$ **FALSE**
Indistinguishable Words

- Let DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize L
- Given $x, y \in \Sigma^*$
 - $x \sim_L y$ (x and y are *indistinguishable*) iff
 $\forall z \in \Sigma^*, xz \in L$ iff $yz \in L$
 - $x \sim_M y$ iff
 M ends in the same state on both x and y

Which has more equivalence classes -- \sim_M or \sim_L ?

Myhill-Nerode Theorem
(a version)

The relation \sim_L *defines a DFA M_L* for
language L where the states of M_L
correspond to the equivalence
classes of \sim_L

M_L is the unique, minimal DFA for L
(up to isomorphism)
Proof of Myhill-Nerode Thm.

Next:
Algorithm for DFA Minimization
Indistinguishable States

• Idea: Merge “indistinguishable states”
• Recall:
 – States of DFA M map 1-1 to equivalence classes of \(\sim_M \)
 – Each equivalence class of \(\sim_M \) is in some equivalence class of \(\sim_L \)
• States p and q are indistinguishable iff their corresponding \(\sim_M \) equivalence classes are in the same class of \(\sim_L \)
 – We write \(p \sim q \)
 – \(p \not\sim q \) → “p and q are distinguishable”

The Algorithm We Want

Input: DFA M
Output: DFA \(M_L \) such that:

\[M \equiv M_L \]
\[M_L \text{ has no unreachable states} \]
\[M_L \text{ is irreducible} \]
\[\text{states of } M_L \text{ are pairwise distinguishable} \]

Theorem: \(M_L \) is the unique minimum
DFA Minimization Algo.: Idea

- States of M_L are equivalence classes of \sim_L
- Equivalence classes of \sim_L can be obtained by merging states of M
- Our algorithm works in reverse:
 - Start by assuming all states as being merged together
 - Identify pairs of distinguishable states
 - Repeat until no new distinguishable state-pairs identified

TABLE-FILLING ALGORITHM

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$
Output: Table: $\{ (p,q) \mid p,q \in Q \text{ and } p \not\sim q \}$

States of $M_L = \{ [q] \mid q \in Q \}$

- **Base Case:** p accepts and q rejects $\Rightarrow p \not\sim q$
- **Recursion:**
 $$p \xrightarrow{\sigma} p' \not\sim \Rightarrow p \not\sim q$$
 $$q \xrightarrow{\sigma} q' \not\sim \Rightarrow q \not\sim q$$
Correctness of Algorithm

1. If algorithm marks (p, q) as “d”, then p \n q

2. If p \n q, then algorithm marks (p, q) as “d”

Proving (1) is easy. Use induction on the step at which (p, q) was marked “d”.

Do Try this at Home!
Part (2):
If \(p \not\sim q \), then the algorithm marks \((p, q) \) as “d”

Proof (by contradiction):
Suppose \(p \not\sim q \), but the algorithm does not mark \((p, q) \) as “d”

Since \(p \not\sim q \) there exists \(w \) such that:

\[
\hat{\delta}(p, w) \in F \text{ and } \hat{\delta}(q, w) \notin F
\]

Of all such “bad pairs” \((p, q)\), let \(p, q \) be a pair with the smallest \(|w|\)

If \(p \not\sim q \), then the algorithm marks \((p, q) \) as “d”

Proof (by contradiction):
Suppose \(p \not\sim q \), but the algorithm does not mark \((p, q) \) as “d”

\[
\hat{\delta}(p, w) \in F \text{ and } \hat{\delta}(q, w) \notin F
\]

Of all such “bad pairs” \((p, q)\), let \(p, q \) be a pair with the smallest \(|w|\)

\[
w = \sigma w', \text{ where } \sigma \in \Sigma \quad (w \text{ is not } \varepsilon, \text{ why?})
\]

Let \(p' = \delta(p, \sigma) \) and \(q' = \delta(q, \sigma) \)

Then \((p', q')\) is also a bad pair **Contradiction!** (why?)
Complexity of Algorithm

• For DFA M, let
 – Number of states of M be \(n \)
 – Size of the input alphabet \(\Sigma \) be \(k \)
• Initialization of table: \(O(n^2) \)
• Rest of the algorithm: \(O(k \ n^2) \)

Minimal NFA is NOT Unique
Next Steps

• Read Sipser 2.1 in preparation for next lecture