What we’ll do today

• Prove that DFAs and NFAs are equally expressive
• Use that to prove closure of other regular operations
• Introduction to regular expressions
Recap: Closure

• If you perform an operation on one/more regular languages, is the result also a regular language?

Operations on Regular Languages

Given: Two regular languages A and B

✓ Union: \(A \cup B = \{w \mid w \in A \text{ or } w \in B\} \)

✓ Intersection: \(A \cap B = ? \)

✓ Complementation: \(\overline{A} = \{w \mid w \not\in A\} \)

• Reverse: \(A^R = \{w_1w_2\ldots w_k \mid w_kw_{k-1}\ldots w_1 \in A\} \)

• Concatenation:
 \(A \cdot B = \{vw \mid v \in A \text{ and } w \in B\} \)

• Star:
 \(A^* = \{w_1w_2\ldots w_k \mid k \geq 0 \text{ and each } w_i \in A\} \)
Closure under Reverse

- **Reverse**: \(A^R = \{ w_1 w_2 \ldots w_k \mid w_k w_{k-1} \ldots w_1 \in A \} \)

- Regular languages are closed under reverse. Here’s an attempt to prove it:
 - Given \(M \) that recognizes \(A \)
 - What if you could “run it backwards”?
 - Construct \(M^R \) as \(M \) with all arrows reversed & accept state interchanged with start state
 - \(M^R \) is an NFA

A non-deterministic finite automaton (NFA) is also a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \) is the set of states
- \(\Sigma \) is the alphabet
- \(\delta : Q \times \Sigma \varepsilon \to 2^Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F \subseteq Q \) is the set of accept states
- \(2^Q \) is the set of subsets of \(Q \) and \(\Sigma \varepsilon = \Sigma \cup \{ \varepsilon \} \)
Equivalence

- Two automata are equivalent if their languages are the same
 - For M_1, M_2, $L(M_1) = L(M_2)$
- DFAs and NFAs:
 - For every NFA there is an equivalent DFA (we'll prove this) and vice-versa (this is easy, why?)
Theorem: Every NFA has an equivalent DFA

Corollary: A language is regular iff it is recognized by an NFA

Corollary: L is regular iff L^R is regular (need to also prove that M^R recognizes L^R)

From NFA to DFA

- **Proof Hints:**
 - **Proof by construction**
 Given an arbitrary NFA N, construct an equivalent DFA M
 - **Proof by induction**
 N accepts a word w iff M accepts w
FROM NFA TO DFA

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q'_0, F') \)

\[Q' = ? \]

From NFA to DFA

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q'_0, F') \)

Idea:

\[Q' = 2^Q \]

Assume (for now) that there are no \(\epsilon \)-transitions

Each non-stuck path in the computation tree is of equal length

Do a BFS (breadth-first search) on this tree, tracking the “set of states” transitioned to
NFA Example

Run on 1110

From NFA to DFA

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

Idea: \(Q' = 2^Q \)

What if we had \(\varepsilon \)-transitions?
From NFA to DFA

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q'_0, F') \)

Idea:
\(Q' = 2^Q \)

What if we had \(\epsilon \)-transitions?
After reading an input symbol, follow \(\epsilon \)-transitions until you can’t any more

Given a set \(S \) in \(2^Q \), \(E(S) \) is the set of all states reached from \(S \) by following \(\epsilon \)-transitions
- \(E(S) \) is called the \(\epsilon \)-closure of \(S \)

NFA Example

Run on 1110
From NFA to DFA

Input: $N = (Q, \Sigma, \delta, q_0, F)$
Output: $M = (Q', \Sigma, \delta', q_0', F')$

$Q' = 2^Q$

$\delta' : Q' \times \Sigma \rightarrow Q'$

$\delta'(R, \sigma) = \bigcup_{r \in R} E(\delta(r, \sigma))$

$q_0' = ?$

$F' = ?$

(read details of the construction in Sipser)
From NFA N to DFA M

• Construction is complete
• But the proof isn’t: Need to prove
 \(N \) accepts a word \(w \) \iff \(M \) accepts \(w \)

• Use *structural induction* on the length of \(w \), \(|w| \)
 – Base case: \(|w| = 0 \)
 – Induction step: Assume for \(|w| = n \), prove for \(|w| = n+1 \)

Useful Definition

• Let \(w \in \Sigma^* \)
• For an NFA \(N \):
 – \(\delta(q, w) \) = set of states reached by executing \(N \) on \(w \) starting from \(q \)
 – Note that a state of \(N \) is in \(Q \)
• For the corresponding DFA \(M \):
 – \(\delta'(q', w) \) = state reached by executing \(M \) on \(w \) starting from \(q' \)
 – Note that a state of \(M \) is in \(2^Q \)
NFA to DFA: Complexity

• If the original NFA N has n states, how large can the corresponding DFA M be?

– Answer: 2^n states
– Exercise: construct an example where N has n states and M has $\Theta(2^n)$ states
Remaining Operations

Given: Two regular languages A and B

- **Concatenation:**
 \[A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \]

- **Star:**
 \[A^* = \{w_1w_2\ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \]

Closure under Concatenation

Given DFAs M_1 and M_2, how can we construct an NFA N for $L(M_1) \cdot L(M_2)$?
Closure under Concatenation

Given DFAs M_1 and M_2, construct NFA N by connecting all accept states in M_1 to start states in M_2

- What are accept states of N?

Closure under Star

Let L be a regular language and M be a DFA for L

How do we construct an NFA N that recognizes L^*?
Closure under Star

Why not the following?

Formally:

Input: DFA $M = (Q, \Sigma, \delta, q_1, F)$
Output: NFA $N = (Q', \Sigma, \delta', \{q_0\}, F')$

- $Q' = Q \cup \{q_0\}$
- $F' = F \cup \{q_0\}$

\[
\delta'(q,a) = \begin{cases}
\{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \varepsilon \\
\{q_1\} & \text{if } q \in F \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon \\
\emptyset & \text{else}
\end{cases}
\]
REGULAR LANGUAGES ARE CLOSED UNDER REGULAR OPERATIONS

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$

Complementation: $\overline{A} = \{ w \mid w \notin A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$

Regular Expressions
What does Language D look like?

D = \{ w | w has equal number of occurrences of 01 and 10\}

w should “toggle” between 0 and 1 an equal number of times

How about: 0, 1, 011, 0110, ε -- are they in D?

\begin{align*}
\Sigma &= \{0, 1\} \\
1 &\cup 0 &\cup &\varepsilon &\cup & (0\Sigma^*0) &\cup & (1\Sigma^*1)
\end{align*}
REGULAR EXPRESSIONS

σ is a regular expression representing \{σ\}
(σ ∈ Σ)
ε is a regular expression representing \{ε\}
∅ is a regular expression representing ∅

If \(R_1 \) and \(R_2 \) are regular expressions representing \(L_1 \) and \(L_2 \) then:

\((R_1 R_2) \) represents \(L_1 \cdot L_2 \)
\((R_1 \cup R_2) \) represents \(L_1 \cup L_2 \)
\((R_1)^* \) represents \(L_1^* \)

Next Steps

• Read Sipser 1.3 in preparation for next lecture