What we’ll do today

- Introduction to
 - DFA : Deterministic Finite Automata
 - NFA : Non-deterministic Finite Automata
- DFAs to/from regular languages
- Operations on regular languages
- Non-determinism and NFAs
- HW1 is out today
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) =$ the language of machine M

$=$ set of all strings machine M accepts
Acceptance (Formal Def.)

- M is a DFA with alphabet Σ
- An input string (word) w is a sequence $w_1 \, w_2 \, w_3 \, \ldots \, w_n$ where each $w_i \in \Sigma$
 - ε denotes the empty string
- M accepts w if “after fully reading w it ends in an accept state”
 - If there is a sequence of states s_0, s_1, \ldots, s_n such that
 - $s_0 = q_0$
 - $s_i = \delta(s_{i-1}, w_i)$
 - $s_n \in F$

Regular Language

- M is a DFA with alphabet Σ
- $L(M)$ is the set of strings accepted by M
 - $L(M)$ is the language of M
 - M recognizes $L(M)$

- Regular language: set of strings that is the language of some DFA

- The set of all possible strings is denoted Σ^*
- Is Σ^* regular?
\[L(M) = ? \]
Design a DFA

$L(M) = \{ w \mid w \text{ has an even number of 1s} \}$
Sample Regular Languages

- Σ^*
- \emptyset
- $\{ w \mid w \text{ ends in a 1} \}$
- $\{ w \mid w \text{ has an even number of 1s} \}$

Points to Ponder

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

- Number of states, $|Q|$, is finite
- Is Σ a finite set?
- Is $L(M)$ a finite set?
 - Does it have a finite representation?
- Suppose you are given the 5-tuple in advance, so you know $|Q|$, etc. Do you know how long you will have to run M on any input? Input length is finite, but unbounded by parameters of M
Operations on Regular Languages

Given: Two regular languages A and B

- Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$
- Intersection: $A \cap B = ?$
- Complementation: $\overline{A} = \{w \mid w \notin A\}$
- Reverse: $A^R = \{w_1w_2...w_k \mid w_kw_{k-1}...w_1 \in A\}$
- Concatenation:
 $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$
- Star:
 $A^* = \{w_1w_2...w_k \mid k \geq 0 \text{ and each } w_i \in A\}$

Closure

- If you perform an operation on one/more regular languages, is the result also a regular language?

- Example:
 Is $A \cup B$ regular if A and B are regular?

 YES
Union Theorem

The union of two regular languages is also a regular language

Proof (Hints)?

An Example
Closure under Reverse

- Reverse: \(A^R = \{ w_1w_2\ldots w_k | \ w_kw_{k-1}\ldots w_1 \in A \} \)

- Regular languages are closed under reverse. Here’s an attempt to prove it:
 - Given \(M \) that recognizes \(A \)
 - What if you could “run it backwards”?
 - Construct \(M^R \) as \(M \) with all arrows reversed & accept state becomes start state
 - Is \(M^R \) guaranteed to be a DFA?
What happens with 100?

We will say that the NFA accepts if there is a way to make it reach an accept state.

Non-determinism
A non-deterministic finite automaton (NFA) is also a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

2^Q is the set of subsets of Q and $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$

$L(M)$ defined in the same way as for DFAs

NFA Example

How does this differ from the DFAs we’ve seen?

- Epsilon transitions
- Missing transitions from some states
- More than 1 transition from a state on same symbol

What’s its language?
NFAs and DFAs

- Is every DFA also an NFA?
- Is every NFA a DFA?

Tree of Computations

Deterministic Computation
- accept or reject

Non-Deterministic Computation
- accept
- reject
- stuck
Where does non-determinism arise?

• In practice: From lack of information
 – A precise model might use randomness (probabilistic transitions between states), but we might not know the probabilities
 – Important! Non-determinism is not the same as probabilistic computation.

• NFAs and DFAs are “equivalent”!
 – Their languages are the same
 • More on this next time
 – But NFAs are simpler

NFAs are simpler than DFAs

An NFA that recognizes the language \{1\}:

A DFA that recognizes the language \{1\}:
Union Theorem for NFAs

- If you have two NFAs N_1 and N_2, with languages L_1 and L_2, how can we get the NFA for $L_1 \cup L_2$?

Next Steps

- Read Sipser 1.2 in preparation for next lecture