HW 6: (Un)Decidability

Assigned: March 11, 2010 Due in drop box by 5 pm: March 19, 2010

Note: Take time to write clear and concise solutions. Confused and long-winded answers may be penalized. Consult the course webpage for course policies on collaboration.

1. (6 points)

 Let A be the following language:

 \[
 \{ G \mid G \text{ is a context-free grammar that generates a string in } \{0, 1\}^* \text{ which the number of 1s is a multiple of 7 and the number of 0s is a multiple of 5} \}.
 \]

 Prove that A is decidable.

2. (8 points)

 Let $\Sigma = \{0, 1\}$, and let A be a language over Σ. Prove that A is Turing-recognizable if and only if there exists a decidable language B where

 \[
 A = \{ w \mid \exists x \in \Sigma^* \text{ s.t. } (w, x) \in B \}
 \]

 Note: B is like a language of “witness strings”. In the above definition, the string x is like a witness to the fact that w is in A, in the following sense: given x, we can decide if $w \in A$ even if that was not possible without x.

3. (8 points)

 Let $\text{PREF}^{\text{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA that accepts any prefix of any string that it accepts} \}$.

 Prove that PREF^{DFA} is decidable.

4. (8 points)

 Let A be a Turing-recognizable language consisting of descriptions of Turing machines, $\{ \langle M_1 \rangle, \langle M_2 \rangle, \ldots \}$, where every M_i is a decider. Prove that some decidable language D is not decided by any decider M_i whose description appears in A.

 (Hint: You may find it helpful to consider an enumerator for A.)