
Recovery can be Simple: Asynchronous 
Logging for Distributed Transactions

Sky Summer Retreat – 2024

Soujanya Ponnapalli
Mentor: Jonathan Goldstein

1



Applications and Distributed Transactions

2



Distributed Transactions have low 
throughput and poor scalability!

3



Back to Fundamentals: Distributed Transactions

Transaction

In the context of databases

4



Back to Fundamentals: Distributed Transactions

Transaction

Commit
Abort

In the context of databases

5

For atomicity, databases rely on distributed commit protocols



Back to Fundamentals: Distributed Transactions

Transaction

Two Phase Commit

6



Back to Fundamentals: Distributed Transactions

Transaction

Two Phase Commit – Phase I (PREPARE)

7



Back to Fundamentals: Distributed Transactions

Transaction

Done

Two Phase Commit – Phase II (COMMIT)

To provide fault-tolerant ACID transactions, databases use logs!
8



Back to Fundamentals: Distributed Transactions

Transaction

Two Phase Commit – Phase II (COMMIT)

Commit T1

9



Back to Fundamentals: Distributed Transactions

Transaction

Two Phase Commit – Phase II (COMMIT)

Commit T1 Commit T1 Commit T1

Done

10



Updating Recovery Logs in the Critical Path!
Transaction Commit Path:

1. Coordinator writes to its Recovery Log before sending commit msgs
2. Servers write to their Recovery Logs before acknowledging commit msgs
3. Primary notifies the client 

Transaction throughput is limited by the I/O throughput at the servers!

11

Highly-contented transactions stall for I/O to complete and scale poorly!



Logging Limits Performance – Why Bother? L
Two-orders of performance difference between storage and network

Networks got faster!
• Accelerated networking with low-latency NICs
• General-purpose datacenter networks like eRPC
• ~100x higher throughput than gRPC

For two servers in the same datacenter at Azure
• eRPC could handle about 2.6 Mops/s
• Whereas network-replicated disks could support 30 Kops/s

12



Mitigating I/O Bottlenecks: Early Lock Release

13



Mitigating I/O Bottlenecks: Early Lock Release
Limited wide-adoption of ELR and asynchronous logging
• In-consistent in-memory state
• Crash recovery and consistency

14



An active tradeoff between 
achieving high performance and 

keeping recovery simple!

15



Simple Idea: Asynchronous Logging

Transaction

16



Simple Idea: Asynchronous Logging

Transaction

Done

Commit T1 Commit T1 Commit T1Commit T1 Commit T1 Commit T1

17



Simple Recovery: Fundamental Challenge

Commit T1 Commit T1 Commit T1

Transaction

18



Simple Recovery: Fundamental Challenge

Commit T1 Commit T1

Transaction

19

Commit T1



Simple Recovery: Fundamental Challenge

Commit T1 Commit T1

Transaction

20



Recovery Becomes Complicated!

Needs tracking distributed dependencies across Recovery Logs

Too many possible states to potentially recover from

21



Cascades: Recovery Can Be Simple!
• Persistence vs Durability

• Persistence
• Commit record is flushed to disk

• Durability
• Commit record and all its dependencies are persisted

Commit T1 Commit T1

22

Commit T1

Commit record is durable when it and its dependencies are persisted



Insight: Speculate on Durability of Commit Records

23

Transaction



Insight: Speculate on Durability of Commit Records

24

Transaction

Commit T1 Commit T1 Commit T1Commit T1 Commit T1 Commit T1

New-Txn



Insight: Replicate Durable Records Asynchronously

25

Transaction



Insight: Replicate Durable Records Asynchronously

26

Transaction

Commit T1Commit T1

Commit T2Commit T2



Insight: Replicate Durable Records Asynchronously

27

Transaction

Commit T1

Commit T2Commit T2



Insight: Replicate Durable Records Asynchronously

28

Transaction

Commit T1

Commit T2Commit T2

Commit T1



Insight: Use Cascade’s Replicas for Simplifying Recovery

29

Transaction

Commit T2

Commit T1

Commit T2 Commit T2

Commit T1

Commit T2 Commit T2

Commit T1

Commit T2



Insight: Use Cascade’s Replicas for Simplifying Recovery

30

Transaction

Commit T2

Commit T1

Commit T2 Commit T2

Commit T1

Commit T2 Commit T2

Commit T1

Commit T2



Insight: Use Cascade’s Replicas for Simplifying Recovery

31

Transaction

Commit T2 Commit T2

Commit T1

Commit T2 Commit T2

Commit T1

Commit T2



Cascades: High Throughput and Simple Recovery

• Provides the same consistency guarantees to the client
• Delays notification until durability

• Cascades simultaneously achieves
• High-throughput
• With asynchronous logging
• Without trading off simplicity of recovery

32



Cascades: Performance Preview
Builds atop Lattice*, an asynchronous logging framework from MSR
*Jose Faleiro, Jonathan Goldstein, Phil Bernstein from MSR Redmond

For highly-conflicted transactions and relative to synchronous logging on 
network-replicated premium-SSDs for logging, Cascades provides 160x higher 
throughput

Instead with high-speed ultra-SSDs (4x faster than premium-SSDs), Cascades 
provides 35x higher throughput

Find me at the poster session! soujanya@berkeley.edu

33

mailto:soujanya@berkeley.edu

