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Abstract

This paper addresses the problem of identifying sparse linear time-invariant (LTI) systems
from a single sample trajectory generated by the system dynamics. We introduce a Lasso-like
estimator for the parameters of the system, taking into account their sparse nature. Assuming
that the system is stable, or that it is equipped with an initial stabilizing controller, we provide
sharp finite-time guarantees on the accurate recovery of both the sparsity structure and the pa-
rameter values of the system. In particular, we show that the proposed estimator can correctly
identify the sparsity pattern of the system matrices with high probability, provided that the
length of the sample trajectory exceeds a threshold. Furthermore, we show that this threshold
scales polynomially in the number of nonzero elements in the system matrices, but logarithmi-
cally in the system dimensions — this improves on existing sample complexity bounds for the
sparse system identification problem. We further extend these results to obtain sharp bounds
on the `∞-norm of the estimation error and show how different properties of the system—such
as its stability level and mutual incoherency—affect this bound. Finally, an extensive case
study on power systems is presented to illustrate the performance of the proposed estimation
method.

1 Introduction
Modern cyber-physical systems, such as power grids, autonomous transportation systems, and
distributed computing and sensing networks, are characterized by being large scale, spatially dis-
tributed, and by having complex ever changing dynamics and interconnected topologies. The
distributed optimal control literature addresses set-point tracking and regulation in the distributed
setting by assuming known dynamics with a sparse interconnections. Indeed, the underlying spar-
sity structure of a distributed system is aggressively (and necessarily) exploited, with foundational
results showing that both tractability [1] and scalability [2, 3, 4, 5] in controller synthesis are only
possible when the underlying dynamical system is suitably sparse. However, in this large-scale,
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dynamic, and complex setting, it is unclear how to obtain the necessary models of the dynamical
systems. To address this issue, we use data-driven approaches to identify both the interconnected
topology and the dynamic behavior of these systems for which first-principle modeling becomes
either intractable or impractical for such large-scale dynamic systems.

This then raises a more fundamental question: how can data-driven methods be appropriately
integrated into safety-critical control loops? This question has been addressed in the context of
learning [6, 7], and control of a small-scale and dense unknown systems, e.g., a single autonomous
vehicle or robot [8, 9, 10, 11, 12]. These works make clear that if a learned model is to be integrated
into a safety-critical control loop, then it is essential that the uncertainty associated with the learned
model be explicitly quantified. This way, the learned model and the uncertainty bounds can be in-
tegrated with tools from robust control to provide strong guarantees of system performance and
stability. This paper takes a first step towards extending these results to the large-scale distributed
setting by providing a sample efficient and computationally tractable algorithm for the identifica-
tion of sparse dynamical systems, as well as providing sharp estimates on the corresponding model
uncertainty.

Main contributions: We show that large-scale sparse system models can be identified with a
complexity scaling quadratically with the number of nonzero elements in the underlying dynamical
system—for systems composed of a large number of subsystems that only interact with a small
number of local neighbors, this computational saving can be significant. We further provide sharp
bounds on the corresponding model uncertainty, paving the way for the use of these models in
safety-critical control loops. Finally, in contrast to previous work, we show that such models can
be extracted from a single trajectory of the system. In the context of large-scale systems, the system
resets needed by methods relying on independent trajectories become prohibitively more expensive
and impractical—indeed contrast resetting a robotic arm and a power distribution network, and the
increase in difficulty becomes apparent. Note that we defer a detailed comparison of our results to
prior work to Section 3.

Paper organization: In Section 2, we formally define the sparse system-identification task that
we consider, and introduce our Lasso-like estimator based on a single system trajectory. Section 3
presents our main result, and compares and contrasts it with existing results in the literature. We
also show that some of the technical assumptions that we make are necessary for a well-posed
problem. We then present an overview of our proof technique in Section ??, and follow this up
with an empirical study of our method on a power system in Section 4. We end with conclusions
in Section 5.
Notation: For a matrix M , the symbols |||M |||, |||M |||∞, ‖M‖F , ‖M‖1, and ‖M‖∞ are used to
denote its induced spectral, induced infinity, Frobenius, element-wise `1/`1, and element-wise
`∞/`∞ norms, respectively. Furthermore, ‖M‖0 refers to the number of nonzero elements in M .
The symbols M:j and Mj: indicate the j th column and row of M , respectively. For a set I, the
symbol |I| denotes its cardinality. Given the index sets U and V , define MUV as the |U| × |V|
submatrix of M obtained by removing the rows and columns with indices not belonging to U and
V . The symbols c and ci play the role of universal constants throughout the paper. E {x} denotes
the expected value of a random variable x. For an event E , the notation P(E) refers to its probability
of occurrence. The notation xn

a.s.→ x means that a sequence of random variables xn converges to x
almost surely.

2



2 Problem Statement
Consider the linear time-invariant (LTI) system

x(t+ 1) = Ax(t) +Bu(t) + w(t) (1)

where A ∈ Rn×n and B ∈ Rn×m are the unknown state and input matrices, respectively. Fur-
thermore, x(t) ∈ Rn, u(t) ∈ Rm, and w(t) ∈ Rn are the respective state, input, and disturbance
vectors at time t.

The goal of this work is to estimate the underlying parameters of the dynamics, based on a
limited number of sample trajectories, i.e., a sequence {(x(i)(τ), u(i)(τ))}Tτ=0 with i = 1, 2, ..., d,
where d is the number of available sample trajectories and T is the length of each sample trajectory.
To simplify the notations, the superscript i is dropped from the sample trajectories when d = 1.

This paper is concerned with the identification of high dimensional but sparse system matrices
(A,B). Such high-dimensional sparse parameters arise in the context of large-scale distributed and
multi-agent systems, where dynamic coupling arises due to local interactions between subsystems–
it is this local interaction structure that results in correspondingly sparse system matrices. Ex-
amples of such systems include power grids, intelligent transportation systems, and distributed
computation and sensing networks.

We now compare and contrast two approaches to collecting sample trajectories from a dynam-
ical system (1):

Fixed d and variable T: In this method, the number of sample trajectories d is set to a fixed value
(e.g., d = 1) and instead, a sufficiently long time horizon (also referred to as learning time) T is
chosen to collect enough information about the dynamics. This approach is most suitable when the
open-loop system is stable, or if a stabilizing controller is provided—note that this assumption of
stability is necessary, as even a simple least-squares estimator may not be consistent if the system
has unstable modes [6]. From a practical perspective, system instability may also impose limits on
how large the learning time can be in order to ensure system safety, thereby restricting the amount
of data that can be collected.

Fixed T and variable d: In this approach, the learning time T is fixed and instead, the number of
sample trajectories is chosen to be sufficiently large. Notice that this method is not dependent on
the system stability. However, one needs to reset the initial state of the system at the beginning of
each sample trajectory, which may not be possible in practice, especially in the case of large-scale
systems.

This work focuses on sparse system identification using a single trajectory, where it is assumed
that the system is either stable, or equipped with an initial stabilizing controller, and our goal is
to both identify the supports of the sparse system matrices (A,B) and estimate their values, using
a single sample trajectory. As mentioned in [8], in many applications, the existence of an initial
stabilizing controller for the unknown system (1) is not restrictive. In fact, [9] introduces an offline
procedure for designing such an initial stabilizing controller.

Indeed, one can cast the sparse system identification task as a supervised learning problem,
where the goal is to fit the linear model (1)—parameterized by (A,B)—to a limited number of
measurements {(x(τ), u(τ))}Tτ=0. Motivated by this observation, one can consider the following
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M -estimator:

(Â, B̂) = arg min
A,B

1

2T

T−1∑
t=0

‖x(t+ 1)− (Ax(t) +Bu(t))‖2
2

+ λ(‖A‖1 + ‖B‖1). (2)

where the first term corresponds to the maximum likelihood estimation of (A,B) when the distur-
bance noise has a zero-mean Gaussian distribution, and the second term has the role of promoting
sparsity in the estimated (Â, B̂).

Before proceeding, it is essential to note that there are fundamental limits on the performance
of the introduced estimator. In particular, the above optimization problem may not have a unique
solution for any length of the sample trajectory. To see this, suppose that u(t) = K0x(t) and K0 is
equal to the identity matrix. Then, the above optimization problem reduces to

(Â, B̂) = arg min
A,B

1

2T

T−1∑
t=0

‖x(t+ 1)− (A+B)x(t)‖2
2

+ λ(‖A‖1 + ‖B‖1).

It is easy to see that, given any optimal solution (Â, B̂) to the above optimization, (Ã, B̃) =
(αÂ, (1 − α)B̂) is also optimal for any 0 ≤ α ≤ 1. To break this symmetry and to guarantee
the identifiability of the parameters, it is essential to inject an input noise to the system at every
time t. In particular, we assume that u(t) = K0x(t) + v(t), where v(t) is a random vector with
a user-defined distribution. As another example, if A is stable and K0 = 0, the need to introduce
noise in the input is inevitable in order to identify the matrix B.

To further analyze the properties of the above estimator, one can write (1) in a compact form.
Let Ψ∗ =

[
A B

]> denote the true parameters of the system. Furthermore, define

Y =

x(1)>

...
x(T )>

 , X=

 x(0)> u(0)>

...
...

x(T−1)> u(T−1)>

 ,W =

 w(0)>

...
w(T−1)>

 . (3)

The system identification problem is then reduced to estimating the unknown parameter Ψ∗ given
the design matrix X , and the observation matrix Y that is corrupted with the noise matrix W . We
can therefore rewrite optimization problem (2) compactly as

Ψ̂ = arg min
Ψ

1

2T
‖Y −XΨ‖2

F + λ‖Ψ‖1 (4)

which corresponds to the so-called Lasso estimator, initially popularized in statistics and machine
learning to estimate the support parameter values of a sparse linear model [13]. The non-asymptotic
properties of this estimator have been widely studied in the literature [14, 15, 16], all highlight-
ing its sub-linear sample complexity under suitable technical conditions. In particular, they show
that under the so-called mutual incoherency of the design matrix and the sparsity of the unknown
parameters, the minimum number of observations for the accurate estimation of the Lasso scales
logarithmically in the dimension of Ψ. Motivated by these results, one may speculate that the pro-
posed estimator (2) benefits from a similar logarithmic sample complexity. However, the validity
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of the derived non-asymptotic estimation error bounds on the Lasso is contingent upon a number of
assumptions on the independence between the design matrix X and the noise matrix W [14, 17];
such assumptions do not necessarily hold in the sparse system identification problem, partly due to
the dependency between the states, the inputs and the disturbance noise. The problematic nature
of this dependency becomes more evident by noting that the Lasso may not be consistent when the
design and noise matrices are dependent [18].

This lack of independence in the design and noise matrices of the sparse system identification
problem has been the main roadblock in deriving similar sub-linear sample complexity bounds for
the sparse system identification problem and it leaves the following question unanswered:

Is the estimator (2) consistent, and if so, what is its sample complexity?

3 Main Results
Despite the fact that in general, the Lasso may not be a consistent estimator when the design
and noise matrices are dependent, we exploit the underlying structure of the system identification
problem to control this dependency and provide an affirmative answer to the posed question. In
other words, we show that not only is the proposed estimator (2) consistent, but that it also enjoys
a logarithmic sample complexity in the state and input dimensions, under appropriate conditions.
To this goal, we first provide a number of definitions.

Definition 1. A zero-mean (centered) random variable x is sub-Gaussian with parameter b if its
moment generating function satisfies

E{exp(tx)} ≤ exp

(
b2t2

2

)
for every t.

For a centered sub-Gaussian random variable x with parameter b, one can easily verify that
P(|x| > t) ≤ 2 exp

(
t2

2b2

)
. The most commonly known examples of such random variables are

Gaussian, Bernoulli, and any bounded random variable.

Definition 2. Given a sub-Gaussian random variable x, its sub-Gaussian norm, denoted by ‖x‖ψ
is defined as the smallest r > 0 such that the inequality E{x2/r2} ≤ 2 is satisfied.

It is well-known that the above two definitions are closely related. In particular, it can be

verified that 1√
5
b ≤ ‖x‖ψ ≤

√
8
3
b for a sub-Gaussian random variable with parameter b.1 For a

random vector x with sub-Gaussian elements, ‖x‖ψ is defined as maxi{‖xi‖ψ}.
As mentioned before, we assume that the dynamical system is equipped with an initial static

and stabilizing state-feedback controller K0. More specifically, we assume that at any given time
t, the input u(t) is equal to K0x(t) + v(t), where v(t) is a user-defined input noise with inde-
pendent and centered sub-Gaussian elements whose non-zero variance is upper bounded by σ2

v

(for stable systems, K0 can be set to zero). Similarly, we assume that the disturbance noise at

1This is a standard result; see [19] and [20] for a simple proof.
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every time t is a random vector with independent and centered sub-Gaussian elements whose
variance is upper bounded by σ2

u. Further, let η > 0 be the smallest positive constant such that
max{‖w(t)‖ψ, ‖v(t)‖ψ} ≤ η; such a constant is guaranteed to exist as w and v are assumed to be
centered sub-Gaussian random variables.

Remark 1. Most of the existing results on the sample complexity of the system identification prob-
lem assume a centered Gaussian distribution for the input noise [7, 21, 9]. Despite having de-
sirable finite-time properties, these types of Gaussian inputs may jeopardize the safety of the dy-
namical system due to their unbounded range. Accordingly, in many control systems, the input is
constrained to have a limited power. These types of constraints can be translated into `∞ or `2

bounds on the input signal. Due to the fact that such bounded random signals are sub-Gaussian,
our results are readily applied to system identification problems with input constraints.

Notice that for LTI systems, the uniform asymptotic stability of the closed-loop system is
equivalent to its exponential stability. In other words, an LTI system is uniformly asymptotically
stable if and only if there exist constants C ≥ 1 and 0 < ρ < 1 such that |||(A+BK0)τ ||| ≤ Cρτ

for every time τ . Without loss of generality, let C ≥ 1 and 0 ≤ ρ < 1 be the smallest constants
such that |||(A+BK0)τB||| ≤ Cρτ , |||K0(A+BK0)τ ||| ≤ Cρτ and |||K0(A+BK0)τB||| ≤ Cρτ

for every time τ . Note that the existence of such C ≥ 1 and 0 < ρ < 1 is guaranteed due to the
exponential stability of the closed-loop system.

Furthermore, we assume that the initial state x(0) rests at its stationary distribution or, equiva-
lently, the following equality holds:

x(0) = lim
T̃→∞

−1∑
τ=−T̃

(A+BK0)−τ−1(w(τ) +Bv(τ))

Note that, for exponentially stable systems, the state converges to its stationary distribution expo-
nentially fast and therefore, the stationarity of x(0) is a reasonable assumption. Furthermore, using
the above equality, it is easy to see that x(0) is a random vector whose elements are (dependent)
centered sub-Gaussian random variables with bounded parameters. Moreover, one can verify that
its covariance E{x(0)x(0)>} = Q∗ satisfies the following Lyapunov equation:

(A+BK0)Q∗(A+BK0)> −Q∗ + σ2
wI + σ2

vBB
> = 0 (5)

Accordingly,Q∗ can be used to derive the covariance matrixM∗ for the random vector
[
x(0)> (K0x(0) + v(0))>

]>:

M∗ =

[
Q∗ Q∗KT

0

K0Q
∗ K0Q

∗KT
0 + σ2

vI

]
Define Aj = {i : Ψ∗ij 6= 0} and let Acj refer to its complement. Denote k as the maximum number
of nonzero elements in any column of Ψ∗.

Assumption 1. The following inequalities are satisfied

A1 (Mutual incoherence)

max
1≤j≤n

{
max
i∈Ac

j

{∥∥∥M∗
iAj

(M∗
AjAj

)−1
∥∥∥

1

}}
≤ 1− γ
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A2 (Bounded eigenvalue)

min
1≤j≤n

λmin(M∗
AjAj

) ≥ Cmin

A3 (Bounded infinity norm)

max
1≤j≤n

∣∣∣∣∣∣∣∣∣(M∗
AjAj

)−1
∣∣∣∣∣∣∣∣∣
∞
≤ Dmax

A4 (Nonzero gap)

min
1≤j≤n

{
max
i∈Aj

{
|Ψ∗ij|

}}
≥ Ψmin

for some constants 0 < γ < 1, 1 ≥ Cmin > 0, Dmax ≥ 1 and 1 ≥ Ψmin > 0.

Next, we present the main result of the paper.

Theorem 1. Assume that k ≥ 2 and

λ = c1 ·
C

1− ρ
· η

2

γ

√
log((n+m)/δ)

T
(6)

T ≥ c2 ·
C4

(1− ρ)4
· D2

max

γ2C2
minΨ2

min

· k2 log((n+m)/δ), (7)

where c1 and c2 are universal constants. Then, the following statements hold with probability of at
least 1− δ:

1. (Correct sparsity recovery) (4) has a unique solution and recovers the true sparsity pattern
of Ψ∗.

2. (`∞-norm error) We have

‖Ψ̂−Ψ∗‖∞ ≤ c3 ·
C

1− ρ
· Dmaxη

2

γ

√
log((n+m)/δ)

T
(8)

where c3 is a universal constant.

Remark 2. As mentioned before, the injection of a random input noise is essential to guarantee the
identifiability of the parameters. This is also reflected in the above theorem: in order to guarantee
a finite sample complexity for the proposed estimator, it is crucial to have Cmin > 0, which is only
possible if σv > 0.

A number of observations can be made based on Theorem 1. First, it implies that if γ, C,
Dmax, Cmin, Ψmin, and ρ do not scale with the system dimension, then T = Ω(k2 log(n + m))
is enough to guarantee the correct sparsity recovery and a small estimation error. Notice that
for sparse systems, this quantity can be much smaller than the system dimension. Second, the
sample complexity of the proposed estimator depends on C

1−ρ , which is a measure of the system
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stability. In particular, for highly stable systems, C
1−ρ is small, resulting in an improved accuracy

of the proposed estimator with smaller T . In contrast, when the system is close to its stability
margin, C

1−ρ will grow which negatively affects the estimation error as well as the lower bound on
T . Another intuitive interpretation of C

1−ρ is that it measures the amount of dependency between
the states at different times: for highly stable systems where ρ is small, (x(t), u(t)) is only weakly
dependent on (x(τ), u(τ)) for τ = 0, . . . , t− 1, thereby facilitating the estimation of the unknown
parameters. We finally mention that this dependency is in contrast with the recent discoveries
on the sample complexity of the least-squares estimator, which support the favorable effect of
a large ρ on the accuracy of the estimator [22]. We leave investigating whether this seemingly
contradictory observation is an artifact of our methodology (e.g., mixing the initial state to the
stationary distribution), or is fundamental to the sparse system identification problem, to future
work.

Remark 3. In order to further enhance the accuracy of the proposed estimator, one can perform
a least-squares estimation restricted to the nonzero elements of the estimated parameter, after
obtaining its sparsity pattern via the proposed method. Although, theoretically, this post-model-
selection estimation method may not improve the estimation error rate, it will incur less bias [23].
We will show in our simulations that the effect of this post-processing step can be significant in the
accuracy of the estimation.

3.1 Comparison to prior art
As mentioned before, another line of work focuses on unstructured system identification, where
either the learning time T or the number of sample trajectories d is allowed to grow. In [9], the
authors consider the sample complexity of the system identification problem with multiple sample
trajectories via least-squares, where it is shown that the proposed estimator incurs a small error,
provided that d = Ω(n + m). Revisiting (20) reveals that the proposed method outperforms
the sample complexity of ordinary least-squares when k is significantly smaller than n + m, i.e.,
exploiting prior knowledge of the system sparsity leads to a reduction in sample complexity. In [6,
22, 11, 12], the authors consider unstructured system identification from a single sample trajectory
under different assumptions on system stability and/or the initial state of the system. However,
similar to [9], none of these works take advantage of the underlying sparsity structures of the
system matrices. As a result, they cannot correctly estimate the sparsity structure of (A,B) and
suffer from poor dependencies on the system dimensions in the large-scale and structure setting.

Subsequently, a Lasso-type estimator is proposed in [21] to further exploit the underlying spar-
sity pattern of (A,B) with d sample trajectories, each with a zero initial state. In particular, it is
shown that d = Ω

(
κ(Σ)2

γ2Ψ2
min
k log(n+m)

)
is enough to ensure the correct sparsity recovery and a

small estimation error with high probability, where κ(Σ) is the condition number of the finite-time
controllability matrix of the system. Comparing this quantity with (20), one can observe that the
former has a better dependency on k. However, κ(Σ) is highly dependent on the learning time T .
In fact, it is easy to show that for unstable systems, κ(Σ) may grow exponentially fast with respect
to T . On the other hand, (20) is free of such dependency and instead, it is in terms of the stationary
distributions of the state and input vectors.

Moreover, our work is a major extension to the results of [7], where the authors address a simi-
lar sparse system identification problem with a single sample trajectory. First, unlike the presented
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results, [7] only considers autonomous systems, i.e., systems (1) with B=0. Second, [7] only en-
sures the correct sparsity recovery of the true parameters. In contrast, we extend these results to
obtain non-asymptotic bounds on the estimation error. As demonstrated in [9, 8], having these
bounds is essential for the design of near-optimal and robustly stabilizing controllers. Third, [7]
requires that the closed-loop system be contractive with respect to the spectral norm, i.e., that
|||(A+BK0)||| < 1, whereas we only require system stability. Notice that the former condition is
much stronger, as in practice, stable systems are often not contractive in spectral norm. Finally, the
validity of the non-asymptotic bounds introduced in [7] heavily relies on the Gaussian nature of the
disturbance and input noises. As an extension to this result, our proposed method targets a larger
class of uncertainties for the disturbance and input noises, thereby allowing for norm bounded
disturbance and input signals.

3.2 Mutual incoherency
In this subsection, we analyze the mutual incoherence condition on the steady-state covariance
matrixM∗. In particular, we explain why this assumption is not an artifact of the proposed method,
but that it rather stems from a fundamental limitation of any sparsity-promoting technique for the
system identification problem. We show that similar mutual incoherence assumptions are indeed
necessary to recover the correct sparsity of system parameters by using a class of oracle estimators.

We assume that the oracle estimator can measure the disturbance matrixW and that it can work
with sample trajectories of an arbitrary length. With these assumptions, the oracle estimator solves
the following optimization problem to estimate the parameters of the system:

min
Ψ
‖Ψ‖0 (9a)

s.t. XΨ = Y −W (9b)

Clearly, this oracle estimator cannot be used in practice since 1) the disturbance matrix W is
unknown, 2) the learning time T is finite, and 3) the corresponding optimization problem is non-
convex and NP-hard in its worst case. Setting aside these restrictions for now, there are fundamen-
tal limits on the consistency of this estimator. To explain this, we introduce the mutual-coherence
metric for a matrix (note the difference between this definition and Assumption A1). For a given
matrix A ∈ Rt1×t2 , its mutual-coherence µ(A) is defined as

µ(A) = max
1≤i<j≤t2

|A>:,iA:,j|
‖A:,i‖2‖A:,j‖2

In other words, µ(A) measures the maximum correlation between distinct columns of A. Reminis-
cent of the classical results in the compressive sensing literature, it is well-known that the optimal
solution Ψ∗ of (9) is unique if the following identifiability condition

‖Ψ∗:,j‖0 <
1

2

(
1 +

1

µ(X)

)
(10)

holds for j = 1, 2, ..., n (see, e.g., Theorem 2.5 in [24]). Furthermore, this bound is tight, implying
that there exists an instance of the problem for which the violation of ‖Ψ∗:,j‖0 < 1

2

(
1 + 1

µ(X)

)
9
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Figure 1: (a) The mismatch error with respect to the learning time for different number of generators in the system.
The values are averaged over 10 independent trials. (b) The normalized estimation error for Lasso (abbreviated as
LASSO), Lasso + least-squares (abbreviated as LASSO+LS), and least-squares (abbreviated as LS) estimators with
respect to the learning time. The values are averaged over 10 independent trials. (c) The distribution of mutual
incoherence parameter γ for 2000 randomly generated instances of the problem.

for some j results in the non-uniqueness of the optimal solution. On the other hand, according to
Lemma 3 (to be introduced later) and the Borel-Cantelli lemma, 1

T
X>X converges to M∗ almost

surely, as T →∞. This implies that

µ(X) = max
1≤i<j≤m+n

|X>:,iX:,j|
‖X:,i‖2‖X:,j‖2

a.s.→ max
1≤i<j≤m+n

|M∗
ij|√

M∗
iiM

∗
jj

The above analysis reveals that the off-diagonal entries of M∗ play a crucial role in the identifi-
ability of the true parameters: as these elements become smaller relative to the diagonal entries,
the oracle estimator can correctly identify the structure of Ψ for a wider range of sparsity lev-
els. Similarly, our proposed mutual incoherence assumption is expected to be satisfied when the
off-diagonals of M∗ have small magnitudes, relative to the diagonal entries. This implies that As-
sumption A1 is a natural condition to impose in order to ensure the correct sparsity recovery of
Ψ. Furthermore, in practice, M∗ will be close to a diagonally dominant matrix with exponentially
decaying off-diagonal entries, provided that the matrices A, B, and K0 have sparse structures [25].

4 Numerical Experiments
As a case study, we consider the frequency control problem for power systems, where the goal is
to control the governing frequency of the entire network, based on the so-called swing equations.
Assume that there exist Ng generators in the system. It is common to describe the per-unit swing
equations using the well-known direct current (DC) approximation:

Miθ̈i +Diθ̇i = PMi
− PEi

where θi is the voltage angle at generator i, PMi
is the mechanical power input at generator i, and

PEi
denotes the active power injection at the bus connected to generator i. Furthermore, Mi andDi

are the inertia and damping coefficients at generator i, respectively. Under the DC approximation,
the relationship between active power injection and voltage is defined as follows:

PEi
=
∑
j∈Ni

Bij(θi − θj)
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where n is the number of generators in the network, Ni collects the neighbors of generator i, and
Bij is the susceptance of the line (i, j). After discretization with the sampling time dt, the system
of swing equations is reduced to the following dynamical system:

xi(t+ 1) =

(
Aiixi(t) +

∑
j∈Ni

Aijxj(t)

)
+Biiui(t) + wi(t)

where xi =
[
θi θ̇i

]>
, ui(t) = PMi

, and

Aii=

[
1 dt

−
∑

j∈Ni
Bij

Mi
dt 1− Di

Mi
dt

]
, Aij =

[
0 0

Bij

Mi
dt 0

]
, Bii=

[
0
1

]
The goal is to identify the underlying dynamical system based on a single sample trajectory con-
sisting of a sequence of mechanical power inputs and their effects on the angles and frequencies
of different generators. To assess the performance of the proposed method, we generate several
instances of the problem according to the following rules:

- the generators are connected via a randomly generated tree with a maximum degree of 10.

- the parameters Bij , Mi, Di are uniformly chosen from [0.5, 1], [1, 2], [0.5, 1.5], respectively.

Furthermore, the sampling time dt is set to 0.1. We assume that the disturbance noise has a zero-
mean Gaussian distribution with covariance 0.01I2×2. Notice that the magnitude of the noise is
comparable to those of the nonzero elements in A and B. Furthermore, the mechanical input is
set to ui(t) = −0.1(θi + θ̇i) + vi(t), where vi(t) is a randomly generated input noise, distributed
according to a zero-mean Gaussian distribution with variance 0.05. Notice that the first term in the
input signal is used to ensure the closed-loop stability.

The reported results are for a serial implementation in MATLAB R2017b, and the function
lasso is used to solve (2). It is worthwhile to note that the running time can be further reduced
via parallelization; this is trivially possible due to the decomposable nature of the problem. The
mismatch error is defined as the total number of false positives and false negatives in the sparsity
pattern of the estimated parameters (Â, B̂). Furthermore, relative learning time (RLT) is defined as
the learning time normalized by the dimension of the system, and relative mismatch error (RME)
is used to denote the mismatch error normalized by the total number of elements in A and B. In

all of our experiments, the regularization coefficient λ is set to λ =
√

0.03 log(n+m)
T

. Note that this
value does not require any additional fine-tuning and is at most a constant factor away from (6).

Figure 1a illustrates the mismatch error (averaged over 10 different trials) with respect to the
learning time T and for different number of generatorsNg that are chosen from {100, 200, 400, 800}.
These correspond to the total system dimensions of {300, 600, 1200, 2400}. Note that the largest
instance has more than 3.84 million unknown parameters. Not surprisingly, the learning time
needed to achieve a small mismatch error increases as the dimension of the system grows. Con-
versely, a smaller value for RLT is needed to achieve infinitesimal RME for larger systems. In
particular, when Ng is equal to 100, 200, 400, and 800, the minimum RLT to guarantee RME
≤ 0.1% is equal to 3.83, 1.42, 0.50, and 0.16, respectively.
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As mentioned before, the accuracy of the proposed estimator can be improved by additionally
applying the least-squares over the nonzero elements of (Â, B̂). Figure 1b illustrates the nor-
malized 2-norm estimation error of this approach (abbreviated as LASSO+LS), compared to the
proposed method without any post-processing step (abbreviated as LASSO), and the least-squares
estimator (abbreviated as LS) when Ng is set to 200. It can be observed that both LASSO+LS and
LS significantly outperform LS; in fact, LS is not even well-defined if the learning time is strictly
less than the system dimensions. Furthermore, on average, the estimation error for LASSO+LS is
1.91 times smaller than that of LASSO.

Finally, only 32 out of 360 generated instances did not satisfy the proposed mutual incoherence
condition. However, this violation did not have a significant effect on the accuracy of the proposed
estimator. To further investigate the frequency of the instances that satisfy this condition, we plot
the histogram of the mutual incoherence parameter γ for 2000 randomly generated instances with
fixed Ng = 200. It can be seen in Figure 1c that the mutual incoherence condition is violated only
for 5.15% of the instances.

5 Conclusions
The problem of sparse system identification of linear time-invariant (LTI) systems is considered in
this work, where the goal is to estimate the sparse structure of the system matrices based on a single
sample trajectory of the dynamics. A Lasso-type estimator is introduced to identify the parame-
ters of the system, while promoting their sparsity via a `1-regularization technique. By carefully
examining the underlying properties of the system—such as its stability and mutual incoherency—
we provide non-asymptotic bounds on the accuracy of the proposed estimator. In particular, we
show that it correctly identifies the sparsity structure of the system matrices and enjoys a sharp up-
per bound on its estimation error, provided that the learning time exceeds a threshold. We further
show that this threshold scales polynomially in the number of nonzero elements but logarithmically
in the system dimensions.
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A Proof of Theorem 1
In this section, we present the sketch of the proof for the main theorem. Define

L(Ψ:,j) = ‖Y −XΨ:,j‖2
2

and
Ψ̂:,j = arg min

1

2T
L(Ψ:,j) + λ‖Ψ:,j‖1 (11)

for every j ∈ {1, 2, ..., n}. It is easy to verify that

Ψ̂ =
[
Ψ̂:,1 Ψ̂:,2 · · · Ψ̂:,n

]
Furthermore, the Gradient and Hessian of L(·) are equal to

G = −∇L(Ψ:,j)|Ψ:,j=Ψ∗:,j
=

1

T
XTW:,j,

M = ∇2L(Ψ:,j)|Ψ:,j=Ψ∗:,j
=

1

T
XTX

Note that G can be different for every j. However, we keep this dependency implicit in the no-
tations to streamline the presentation. The following Lemma is at the core of our subsequent
analysis:
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Lemma 1 (Proposition 4.1 [7]). Suppose that the following conditions are satisfied:

‖G‖∞ ≤
λγ

3
,

‖GAj
‖∞ ≤

ΨminCmin

4k
− λ∣∣∣∣∣∣∣∣∣MAc

jAj
−M∗

Ac
jAj

∣∣∣∣∣∣∣∣∣
∞
≤ γCmin

12
√
k
,∣∣∣∣∣∣∣∣∣MAjAj

−M∗
AjAj

∣∣∣∣∣∣∣∣∣
∞
≤ γCmin

12
√
k

Then, (11) recovers the true sparsity pattern of Ψ∗:,j .

The first step in proving Theorem 1 is to verify that the conditions of Lemma 1 hold with
high probability. To this goal, first we write x(t) and u(t) in terms of x(0), w(τ) and v(τ) for
τ = 0, 1, . . . , t:

x(t) =(A+BK0)tx(0) +
t−1∑
τ=0

(A+BK0)t−τ−1(w(τ) +Bv(τ))

u(t) =v(t) +K0(A+BK0)tx(0) +
t−1∑
τ=0

K0(A+BK0)t−τ−1(w(τ) +Bv(τ))

Instead of initiating the system at x(0) with the stationary distribution, we will start at the time
−T0, with a modified initial state x(−T0) = w(−T0 − 1) +Bv(−T0 − 1), where w(−T0 − 1) and
v(−T0− 1) have the same distributions as the disturbance and input noises, respectively. Since the
system is stable, by taking T0 →∞ and invoking the Continuous Mapping Theorem, the matrices[

x(0) x(1) . . . x(T − 1)
]

and [
K0x(0)+v(0) K0x(1)+v(1) . . . K0x(T−1)+v(T−1)

]
converge in distribution to the same matrices when the system is initialized at a state with the
stationary distribution. Therefore, without loss of generality, we will focus on the former. Based
on this observation, one can write

x(t) = lim
T0→∞

t−1∑
τ=−T0−1

(A+BK0)t−τ−1(w(τ) +Bv(τ))

u(t) = v(t)+ lim
T0→∞

t−1∑
τ=−T0−1

K0(A+BK0)t−τ−1(w(τ)+Bv(τ))

This implies that the elements in G and M can be written as quadratic functions of the disturbance
and input noises in the form of Gi = z>RGz and Mij = z>RMz, where z ∈ R(n+m)(t+T0+1) is a
random vector, defined as

z=
[
w(−T0−1)> · · · w(t− 1)> v(−T0−1)> · · · v(t− 1)>

]>
The following theorem will be used in our analysis to provide concentration bounds on G and M .
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Theorem 2 (Hanson-Wright inequality [26]). Let x =
[
x1 x2 . . . xn

]
be a random vector

with independent zero-mean sub-Gaussian elements. Given a square and symmetric matrix P , the
following inequality holds

P
(∣∣x>Px− E

{
x>Px

}∣∣ > t
)
≤ 2 exp

(
−c ·min

{
t2

‖x‖4
ψ‖P‖2

F

,
t

‖x‖2
ψ|||P |||

})
for every t ≥ 0, where c is a universal constant.

For a symmetric matrix P , we have ‖P‖2
F =

∑n
k=1 λ

2
k. Therefore, the above theorem implies

that, for a sub-Gaussian random vector z with independent elements, we have

P
(∣∣z>Pz−E{z>Pz}∣∣ > t

)
≤ 2 exp

(
−c · t2

‖z‖4
ψ (
∑n

k=1 λ
2
k)

)

provided that t ≤
( ∑

k λ
2
k

maxk |λk|

)
‖z‖2

ψ. The assumptions of Lemma 1 can be seen to hold directly as a
consequence of the following two lemmas:

Lemma 2. Let i ∈ {1, 2, ..., n + m} and suppose that ε < 3Cη2

1−ρ . Then, there exists a universal
constant c4 such that

P{|Gi| > ε} ≤ 2 exp

(
−c4

(1− ρ)2

C2η4
Tε2
)

Proof. See Appendix B.1.

Lemma 3. Let i, j ∈ {1, 2, ..., n+m} and suppose that ε ≤ 4C2η2

(1−ρ)2
. Then, there exists a universal

constant c5 such that

P{|Mij −M∗
ij| > ε} ≤ 2 exp

(
−c5

(1− ρ)4

C4η4
Tε2
)

Proof. See Appendix B.2.

The following proposition shows that for a fixed column j, the proposed estimator (11) cor-
rectly recovers the sparsity pattern with high probability.

Proposition 1. Assume that k ≥ 2 and the following conditions are satisfied:

λ = c6 ·

√
C2η4

γ2T (1− ρ)
log(n+m/δ) (12)

T ≥ c7 ·
C4η4k2

γ2C2
minΨ2

min(1− ρ)4
log(n+m/δ) (13)

for universal constants c6, c7 ≥ 0. Then, (11) recovers the true sparsity pattern of Ψ∗:,j with proba-
bility of at least 1− δ.

Proof. The Lemmas 2 and 3 can be used to prove statement. The details are provided in Ap-
pendix B.3.
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The next lemma provides a deterministic upper bound on the estimation error in terms of the
deviations of M and G from their mean.

Lemma 4. Assume that ∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
≤ min{1, 2η2}

2Dmax

(14)

and (11) recovers the correct sparsity pattern of Ψ∗:,j . Then, the following inequality holds for
E = Ψ̂:,j −Ψ∗:,j:

EAc
j

= 0

‖EAj
‖∞≤

(
2D2

max

∣∣∣∣∣∣∣∣∣MAjAj
−M∗

AjAj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

) (
‖GAj

‖∞+λ
)

(15)

Proof. See Appendix B.4.

The next lemma shows that the condition of Proposition 4 holds with high probability, provided
that T is large enough.

Proposition 2. Assume that

T ≥ c8 ·
D2

maxC
4

(1− ρ)4
k2 log(k/δ) (16)

for some universal constant c5 ≥ 0. Then, the following inequality holds with probability of at
least 1− δ ∣∣∣∣∣∣∣∣∣MAj ,Aj

−M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
≤ min{1, 2η2}

2Dmax

(17)

Proof. Notice that |Aj| ≤ k. One can verify that

P
(∣∣∣∣∣∣∣∣∣MAj ,Aj

−M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
> ε
)
≤ 2k2 exp

(
−c5 ·

(1− ρ)4

C4η4

T

k2
ε2
)

(18)

provided that ε
k
≤ 4C2η2

(1−ρ)2
. Setting ε = min{1,2η2}

2Dmax
and recalling thatDmax, C ≥ 1, one can verify that

ε
k
≤ 4C2η2

(1−ρ)2
is satisfied. Furthermore, by choosing c8 = 16

c5
, one can certify that (16) is enough to

ensure that the right hand side of the above inequality is upper bounded by δ, thereby completing
the proof.

Proof of Theorem 1: First note that (4) can be decomposed into n disjoint sub-problems over
different columns of Ψ, each in the form of (11). Consider the following choices for λ and T :

λ = c6 ·

√
C2η4

γ2T (1− ρ)2
log(4(n+m)/δ) (19)

T ≥ max

{
c7, c8,

1

c4

,
2

c5

}
· C4D2

maxk
2

γ2C2
minΨ2

min(1− ρ)4
log((n+m)/δ) (20)

where c4, c5, c6, c7, and c6 are introduced in Lemmas 2, 3, and Propositions 1, 2. Based on the
Proposition 1 and the above choices for λ and T , (11) recovers the sparsity pattern of Ψ∗:,j for a
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given column index j with probability of at least 1 − δ. Furthermore, based on Proposition 2, the
lower bound on T guarantees that the inequality∣∣∣∣∣∣∣∣∣QAj ,Aj

−Q∗Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
≤ min{1, 2η2}

2Dmax

(21)

holds with probability of at least 1− δ. This, together with Proposition 4 results in

‖E:,j‖∞ ≤
(

2D2
max

∣∣∣∣∣∣∣∣∣QAj ,Aj
−Q∗Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

) (
‖GAj

‖∞ + λ
)

(22)

with probability of at least 1 − 2δ. Now, it suffices to obtain concentration bounds for different
terms of the above inequality. Based on (18) and Lemma 2, one can write

P
(
‖GAj

‖∞ > ε1
)
≤ exp

(
log(2k)− c4 ·

(1− ρ)2

C2η4
Tε21

)
(23)

P
(∣∣∣∣∣∣∣∣∣QAj ,Aj

−Q∗Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
> ε2

)
≤ exp

(
2 log(2k)− c5 ·

(1− ρ)4

C4η4

T

k2
ε22

)
(24)

This implies that, with the following choices

ε1(ζ1) =

√
ζ1 ·

C2η4

c4T (1− ρ)2
log(2k) (25)

ε2(ζ2) =

√
ζ2 ·

C4η4k2

c5T (1− ρ)4
log(2k) (26)

for any ζ1 > 1, ζ2 > 2 that satisfy

ε1(ζ1) ≤ 3Cη2

1− ρ
, ε2(ζ2) ≤ 4C2η2

(1− ρ)2
k, (27)

we have

P
(
‖E:,j‖∞ ≤

(
2D2

maxε2(ζ2) +Dmax

)
(ε1(ζ1) + λ)

)
≥ 1− exp (−(ζ2 − 2) log(2k))

− exp (−(ζ1 − 1) log(2k))− 2δ (28)

Note that the last term on the right hand side is due to a simple union bound on the events that (21)
holds and (11) recovers the correct sparsity pattern of Ψ∗:,j . Now, upon defining

ζ1 =
log(2/δ)

log(2k)
+ 1 (29)

ζ2 =
log(2/δ)

log(2k)
+ 2 (30)

the inequalities in (27) are satisfied, provided that T ≥ max{ 1
c4
, 2
c5
} · log(4k/δ). Furthermore,

combining (29) and (30) with (28) results in

P
(
‖E:,j‖∞ ≤

(
2D2

maxε2(ζ2) +Dmax

)
(ε1(ζ1) + λ)

)
≥ 1− 3δ (31)

18



After plugging (29) and (30) into (26) and (25), the above inequality is reduced to

‖E:,j‖∞ ≤

(
2D2

max

√
2

c5

· C4η4

T (1− ρ)4
k2 log(4k/δ) +Dmax

)

×

(√
1

c4

· C2η4

T (1− ρ)2
log(4k/δ) + c6

√
C2η4

γ2T (1− ρ)2
log(4(n+m)/δ)

)
(32)

with probability of at least 1− 3δ. Due to (20), one can write

D2
max

√
2

c5

· C4η4

T (1− ρ)4
k2 log(4k/δ) ≤ Dmax (33)

Therefore,

‖E:,j‖∞ ≤3Dmax

(
1
√
c4

+ c6

)√
C2η4

γ2T (1− ρ)2
log(4(n+m)/δ)

=

(
3
√
c4

+ 3c6

)
DmaxCη

2

γ(1− ρ)

√
log(4(n+m)/δ)

T
(34)

with probability of at least 1−3δ. Now, to conclude the proof, it suffices to perform a union bound
on different columns of the solution with indices 1 ≤ j ≤ n. This results in

‖E‖∞ ≤
(

3
√
c4

+ 3c6

)
DmaxCη

2

γ(1− ρ)

√
log(4(n+m)/δ)

T
(35)

with probability of at least 1 − 3nδ. Replacing δ with δ
3n

in the above inequality concludes the
proof.

B Proof of Auxiliary Lemmas

B.1 Proof of Lemma 2
To prove this lemma, we first introduce some notations. Define the matrix

R1(X(τ)) =



0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0
X(T0) X(T0 − 1) . . . X(1) X(0) 0 . . . 0 0

X(T0 + 1) X(T0) . . . X(2) X(1) X(0) . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

X(T0 + T − 1) X(T0 + T − 2) . . . X(T ) X(T − 1) X(T − 2) . . . X(0) 0


(36)

whereX(τ) is a matrix valued time-dependent signal. Furthermore, define the symmetrized matrix
R̃1(·) =

(
R1(·) +R1(·)T

)
/2. Finally, for a matrix N , define [N ]i→j as a matrix with the same

size as H and with all rows equal to zero except for the jth row which is equal to the ith row of N .
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Lemma 5. Let λk be the kth eigenvalue of the matrix RG defined as

RG =

 R̃1

(
[(A+BK)τ ]i→j

)
η2 1

2
R1

(
[(A+BK)τB]i→j

)
η2

1
2
R1

(
[(A+BK)τB]i→j

)T
η2 0

 (37)

Then, the following relations hold

max
k
|λk| ≤

3

2

Cη2

1− ρ
(38)

(n+m)(T+T0+1)∑
k

λ2
k ≤

9

2

C2η4T

(1− ρ)2
(39)

Proof. Notice that

‖RG‖ ≤ η2
∥∥∥R̃1

(
[(A+BK)τ ]i→j

)∥∥∥+
1

2
η2
∥∥∥R1

(
[(A+BK)τB]i→j

)∥∥∥ (40)

Similar to the proof of Lemma A.3 in [7], one can verify that∥∥∥R̃1

(
[(A+BK)τ ]i→j

)∥∥∥ ≤ C

1− ρ
(41)∥∥∥R1

(
[(A+BK)τB]i→j

)∥∥∥ ≤ C

1− ρ
(42)

This completes the proof of the second statement. Finally, it is easy to see that the rank of RG is
upper bounded by 2T . This, together with the bound on the maximum eigenvalue completes the
proof of the third statement.

Define the matrix Pji ∈ Rn(T+T0+1)×m(T+T0+1) as

Pji =

[
0(T0+1)×(T0+1) 0(T0+1)×T

0T×(T0+1) IT×T

]
⊗ Eji (43)

where Eji ∈ Rn×m is a 0-1 matrix with 1 at its (j, i)th entry and 0 otherwise.

Lemma 6. Let λk be the kth eigenvalue of the matrix R̃G defined as

R̃G =

 R̃1

(
[K(A+BK)τ ]i→j

)
η2 1

2
R1

(
[K(A+BK)τB]i→j

)
η2 + 1

2
Pjiη

2

1
2
R1

(
[K(A+BK)τB]i→j

)T
η2 + 1

2
P T
jiη

2 0


(44)

Then, the following relations hold

max
k
|λk| ≤

2Cη2

1− ρ
(45)

(n+m)(T+T0+1)∑
k

λ2
k ≤

16C2η4T

(1− ρ)2
(46)
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Proof. The proof of the first statement follows directly from Lemma 5. Furthermore, it is easy to
verify that the rank of R̃G is upper bounded by 4T . This, together with the upper bound on the
maximum eigenvalue completes the proof of the third statement.

Proof of Lemma 2: One can easily verify that

- if i ∈ {1, 2, . . . , n}, thenGi = 1
T
XT

:,iW:,j = 1
T
zTRGz where z ∈ R(n+m)(T+T0+1) is a random

vector with independent zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

- if i ∈ {n+ 1, . . . , n+m}, then Gi = 1
T
XT

:,iW:,j = 1
T
zT R̃Gz where z ∈ R(n+m)(T+T0+1) is a

random vector with independent zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

Furthermore, note that the diagonal entries of bothRG and R̃G are zero and hence, E
{

1
T
zTRGz

}
=

E
{

1
T
zT R̃Gz

}
= 0. This, together with Hanson-Wright inequality and Lemmas 5 and 6 completes

the proof.

B.2 Proof of Lemma 3
Define the matrix

R2(X(τ)) =


X(T0) X(T0 − 1) . . . X(1) X(0) 0 . . . 0 0

X(T0 + 1) X(T0) . . . X(2) X(1) X(0) . . . 0 0
...

...
. . .

...
...

...
. . .

...
X(T0 + T − 1) X(T0 + T − 2) . . . X(T ) X(T − 1) X(T − 2) . . . X(0) 0


(47)

and

H1i = R2

(
[(A+BK0)τ ]i,:

)
η ∈ RT×n(T+T0+1)

H1j = R2

(
[(A+BK0)τ ]j,:

)
η ∈ RT×n(T+T0+1)

H2i = R2

(
[(A+BK0)τB]i,:

)
η ∈ RT×m(T+T0+1)

H2j = R2

(
[(A+BK0)τB]j,:

)
η ∈ RT×m(T+T0+1)

H3i = R2

(
[K0(A+BK0)τ ]i,:

)
η ∈ RT×n(T+T0+1)

H3j = R2

(
[K0(A+BK0)τ ]j,:

)
η ∈ RT×n(T+T0+1)

H4i = R2

(
[K0(A+BK0)τB]i,:

)
η2 + Piη ∈ RT×m(T+T0+1)

H4j = R2

(
[K0(A+BK0)τB]j,:

)
η2 + Pjη ∈ RT×m(T+T0+1) (48)

where the matrix Pj ∈ RT×m(T+T0+1) has the form

Pj =
[
0T×(T0+1) IT×T

]
⊗ ej (49)

and ej ∈ R1×m with 1 at its jth entry and 0 otherwise. These notations will be used in the subse-
quent lemma.
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Lemma 7. Let {k1, k2, k3, k4} ∈ {1, 2, 3, 4}4, where k1 6= k4 and k2 6= k3. Furthermore, let λk be
the kth eigenvalue of the following matrix

RM(k1, k2, k3, k4) =

[
1
2
(H>k1iHk3j +H>k3jHk1i)

1
2
(H>k1iHk4j +H>k3jHk2i)

1
2
(H>k4jHk1i +H>k2iHk3j)

1
2
(H>k2iHk4j +H>k4jHk2i)

]
∈ R(n+m)(T+T0+1)×(n+m)(T+T0+1) (50)

Then, the following relations hold

max
k
|λk| ≤

6C2η2

(1− ρ)2
(51)

(n+m)(T+T0+1)∑
k=1

λ2
k ≤

72C4η4

(1− ρ)4
(52)

Proof. To show the validity of the first statement, one can write

|||RM(k1, k2, k3, k4)|||

≤ 1

2
max{

∣∣∣∣∣∣H>k1iHk3j +H>k3jHk1i

∣∣∣∣∣∣, ∣∣∣∣∣∣H>k2iHk4j +H>k4jHk2i

∣∣∣∣∣∣}+
1

2

∣∣∣∣∣∣H>k1iHk4j +H>k3jHk2i

∣∣∣∣∣∣
≤ 1

2
max{

∣∣∣∣∣∣H>k1i∣∣∣∣∣∣|||Hk3j|||+
∣∣∣∣∣∣H>k3j∣∣∣∣∣∣|||Hk1i|||,

∣∣∣∣∣∣H>k2i∣∣∣∣∣∣|||Hk4j|||+
∣∣∣∣∣∣H>k4j∣∣∣∣∣∣|||Hk2i|||}

+
1

2

(∣∣∣∣∣∣H>k1i∣∣∣∣∣∣|||Hk4j|||+
∣∣∣∣∣∣H>k3j∣∣∣∣∣∣|||Hk2i|||

)
(53)

Furthermore, similar to the proof of Lemma A.4 in [7], one can verify that

|||Hri|||, |||Hrj||| ≤
C

1− ρ
if r = 1, 2, 3

|||Hri|||, |||Hrj||| ≤
2C

1− ρ
if r = 4

Combining this with the above inequality completes the proof of the first statement. Finally, note
that RM(k1, k2, k3, k4) can be written as

R
(1)
M =

1

2

[
H>k1i
H>k2i

] [
Hk3j Hk4j

]
+

1

2

[
H>k3j
H>k4j

] [
Hk1i Hk2i

]
(54)

which implies that its rank is upper bounded by 2T . This, together with the upper bound on the
maximum eigenvalue completes the proof.

Lemma 8. We have E(M) = M∗.

Proof. Define

X1 =
[
x(0) . . . x(T − 1)

]
X2 =

[
Kx(0) + v(0) . . . Kx(T − 1) + v(T − 1)

]
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The theorem can be proven by showing

1

T
E(X1X

T
1 ) = Q∗,

1

T
E(X2X

T
1 ) = KQ∗,

1

T
E(X2X

T
2 ) = KQ∗KT + σ2

vI,

(55)

In what follows, we show the validity of the first equality. The other equalities can be proven in a
similar manner. We have

1

T
E(X1X

T
1 ) =

1

T

T−1∑
τ=0

E(x(τ)x(τ)T ) (56)

Furthermore, notice that x(0) has a stationary distribution and hence, E(x(0)x(0)T ) = Q∗. Fur-
thermore,

E(x(1)x(1)T ) = (A+BK)Q∗(A+BK)T + σ2
wI + σ2

vBB
T = Q∗ (57)

where the second inequality is due to (??). Similarly, one can show that E(x(τ)x(τ)T ) = Q∗ for
every τ ∈ {2, 3, . . . , T − 1} and hence,

1

T
E(X1X

T
1 ) =

1

T

T−1∑
τ=0

Q∗ = Q∗ (58)

This completes the proof.

Proof of Lemma 3: Due to Lemma 8 and upon taking T0 →∞, we have

P{|Mij −M∗
ij| > ε} = P{|Mij − E(Mij)| > ε} (59)

and hence, it suffices to obtain a bound for P{|Mij−E(Mij)| > ε}. We should consider four cases:

- If i, j ∈ {1, 2, . . . , n}, then Mij = 1
T
zTRM(1, 2, 1, 2)z, where z ∈ R(n+m)(T+T0+1) is a

random vector with independent zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

- If i ∈ {1, 2, . . . , n} and j ∈ {n + 1, n + 2, . . . , n + m}, then Mij = 1
T
zTRM(1, 2, 3, 4)z,

where z ∈ R(n+m)(T+T0+1) is a random vector with independent zero-mean sub-Gaussian
elements and ‖z‖ψ ≤ 1.

- If i ∈ {n + 1, n + 2, . . . , n + m} and j ∈ {1, 2, . . . , n}, then Mij = 1
T
zTRM(3, 4, 1, 2)z,

where z ∈ R(n+m)(T+T0+1) is a random vector with independent zero-mean sub-Gaussian
elements and ‖z‖ψ ≤ 1.

- If i ∈ {n + 1, n + 2, . . . , n + m} and j ∈ {n + 1, n + 2, . . . , n + m}, then Mij =
1
T
zTR

(4)
M (3, 4, 3, 4)z, where z ∈ R(n+m)(T+T0+1) is a random vector with independent zero-

mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

Invoking the Hanson-Wright inequality and Lemma 7 for the aforementioned cases completes the
proof.
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B.3 The proof of Proposition 1
We need the following lemma:

Lemma 9. We have

‖M∗‖ ≤ 85C2η2

1− ρ
(60)

Proof. One can easily verify that

Q∗ =
∞∑
τ=0

[
σw(A+BK0)τ σv(A+BK0)τB

] [
σw(A+BK0)τ σv(A+BK0)τB

]T (61)

and hence

M∗ =

[
0 0
0 σ2

vI

]
+
∞∑
τ=0

[
σw(A+BK0)τ σv(A+BK0)τB
σwK0(A+BK0)τ σvK0(A+BK0)τB

] [
σw(A+BK0)τ σv(A+BK0)τB
σwK0(A+BK0)τ σvK0(A+BK0)τB

]T
(62)

Therefore, with the assumption σw, σw ≤ 1 and the fact that σu, σv ≤
√

5η (the proof of which
is simple and can be found, e.g., in [19]), one can write

|||M∗||| ≤ 5η2 + 5η2

∞∑
τ=0

∣∣∣∣∣∣∣∣∣∣∣∣[ (A+BK0)τ (A+BK0)τB
K0(A+BK0)τ K0(A+BK0)τB

]∣∣∣∣∣∣∣∣∣∣∣∣2
≤ 5η2 + 5η2

∞∑
τ=0

(|||(A+BK0)τ |||+ |||K0(A+BK0)τB|||+ |||K0(A+BK0)τ |||

+ |||(A+BK0)τB|||)2

≤ 5η2 + 80η2

∞∑
τ=0

C2ρ2τ

≤ 85C2η2

1− ρ
(63)

This completes the proof.

Based on this lemma, we will take a similar approach to the proof of Theorem 3.1 in [7] to
prove the correct sparsity recovery of the system matrices.

Proof of Proposition 1: To prove this proposition, we need to show that the conditions of Lemma 1
holds with high probability. To ensure that the first condition on G implies the second one, it
suffices to have

λγ

3
≤ ΨminCmin

4k
− λ (64)
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Noting that 0 < γ < 1, one can verify that the following bound on λ is enough to guarantee that
the above inequality holds:

λ ≤ ΨminCmin

8k
(65)

Furthermore, to ensure the last two conditions on M , it suffices to have∣∣∣∣∣∣∣∣∣M:Aj
−M∗

:Aj

∣∣∣∣∣∣∣∣∣
∞
≤ γCmin

12
√
k

(66)

Based on the above analysis, it suffices to have

P
(
‖G‖∞ >

γλ

3

)
≤ δ

2
(67a)

P
(∣∣∣∣∣∣∣∣∣M:Aj

−M∗
:Aj

∣∣∣∣∣∣∣∣∣
∞
>
γCmin

12
√
k

)
≤ δ

2
(67b)

in order to ensure the exact recovery with probability of at least 1− δ. First, we derive conditions
under which (67a) holds. Based on Lemma 2, one needs to ensure the following inequalities

2(n+m) exp

(
−c4 ·

(1− ρ)2

C2η4

γ2λ2

9
T

)
≤ δ

2
(68a)

λ ≤ ΨminCmin

8k
(68b)

γλ

3
≤ 3Cη2

1− ρ
(68c)

where (68c) is a technical condition that is required by Lemma 2. It can be easily verified that (68a)
is satisfied with the choice of

λ =

√
9

c4

· C2η4

γ2T (1− ρ)2
log(4(n+m)/δ) (69)

Based on the chosen value for λ and in order to satisfy (68b), we should have the following lower
bound on T

T ≥ 576

c4

· C2η4k2

Ψ2
minC

2
minγ

2(1− ρ)2
log(4(n+m)/δ) (70)

Similarly, to ensure the validity of (68c), we should have

T ≥ 1

c4

· log(4(n+m)/δ) (71)

Now, we will derive the conditions under which (67b) is satisfied using Lemma 3. To this goal,
first we need to show that the following condition is satisfied:

0 < ε <
4C2η2

(1− ρ)2
(72a)
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which is reduced to
γCmin

12
√
k
<

4C2η2

(1− ρ)2
k (73)

with the choice of ε = γCmin

12
√
k

. However, the above inequality implies that

k3/2 >
1

48

γCmin(1− ρ)2

C2η2
(74)

A sufficient condition for the correctness of the above inequality is to have k ≥ 2. To see this, note
that

Cmin ≤ λmin(M∗
Aj ,Aj

) ≤ λmax(M∗) ≤ 85C2η2

1− ρ
(75)

where the last inequality is due to Lemma 9. Therefore,

1

48

γCmin(1− ρ)2

C2η2
≤ 85

48
< 2 (76)

which implies k ≥ 2. Finally, to verify (67b) and according to Lemma 3, it suffices to have

2(n+m)k exp

(
−c5 ·

(1− ρ)4

C4η4

γ2C2
min

144k
T

)
≤ δ

2
(77)

This implies that

T ≥ 144

c5

· C4η4k

(1− ρ)4γ2C2
min

log(4(n+m)k/δ) (78)

Based on the above analysis, the inequalities (70), (71), and (78) impose lower bounds on T .
Comparing these inequalities with (20), one can verify that the latter dominates all of them. This
completes the proof.

B.4 Proof of Lemma 4
To prove this lemma, first we introduce the KKT conditions for (11).

Lemma 10 (KKT conditions). Ψ̂:,j is an optimal solution for (11) if and only if it satisfies

M(Ψ̂:,j −Ψ∗:,j)−G+ λS = 0 (79)

for some S ∈ ∂‖Ψ̂:,j‖1, where ∂‖Ψ̂:,j‖1 is the sub-differential of ‖ · ‖1 at Ψ̂:,j .

Proof. The proof is trivial and is omitted for brevity.

The following lemma is an immediate consequence of the KKT conditions.

Lemma 11. Assuming that (11) recovers the correct sparsity pattern of Ψ∗:,j , the following equali-
ties hold for E = Ψ̂:,j −Ψ∗:,j:

EAc
j

= 0 (80)

EAj
= (MAj ,Aj

)−1GAj
− λ(MAj ,Aj

)−1SAj
(81)
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Proof. Due to the correct sparsity recovery, we have EAc
j

= 0. This, together with the KKT
conditions imply that

MAjAj
EAj
−GAj

+ λSAj
= 0 (82)

Solving the above equation with respect to EAj
will conclude the proof.

Proof of Lemma 4: Based on Lemma 11, one can write

‖EAj
‖∞ ≤

∥∥(MAjAj
)−1GAj

∥∥
∞︸ ︷︷ ︸

Z1

+λ
∥∥(MAjAj

)−1SAj

∥∥
∞︸ ︷︷ ︸

Z2

(83)

In what follows, we will provide a bound for each term in the above inequality. For Z2, one can
write

Z2 ≤ λ
∥∥∥((MAj ,Aj

)−1 − (M∗
Aj ,Aj

)−1
)
SAj

∥∥∥
∞

+ λ
∥∥∥(M∗

Aj ,Aj
)−1SAj

∥∥∥
∞

≤ λ
(∣∣∣∣∣∣∣∣∣(MAj ,Aj

)−1 − (M∗
Aj ,Aj

)−1
∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣(M∗

Aj ,Aj
)−1
∣∣∣∣∣∣∣∣∣
∞

)
≤ λ

∣∣∣∣∣∣∣∣∣(QAj ,Aj
)−1 − (M∗

Aj ,Aj
)−1
∣∣∣∣∣∣∣∣∣
∞︸ ︷︷ ︸

∆

+Dmax

 (84)

On the other hand, we have

(MAj ,Aj
)−1 =(M∗

Aj ,Aj
)−1−(M∗

Aj ,Aj
)−1
(
MAj ,Aj

−M∗
Aj ,Aj

)
(MAj ,Aj

)−1

=(M∗
Aj ,Aj

)−1

−(M∗
Aj ,Aj

)−1
(
MAj ,Aj

−M∗
Aj ,Aj

)(
(M∗
Aj ,Aj

)−1+
(

(MAj ,Aj
)−1−(M∗

Aj ,Aj
)−1
))
(85)

and therefore

∆ ≤
∣∣∣∣∣∣(MAj ,Aj

)−1
∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

(∣∣∣∣∣∣∣∣∣(M∗
Aj ,Aj

)−1
∣∣∣∣∣∣∣∣∣
∞

+ ∆
)

(86)

This leads to

∆ ≤ D2
max

1−Dmax

∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣∣QAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

≤ D2
max

1−min{1/2, η2}

∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

≤ 2D2
max

∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

(87)

where the last inequality is due to the assumption (14). Combining the above inequality with (84)
gives rise to

Z2 ≤ λ
(

2D2
max

∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

)
(88)
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Now we will bound Z1. Similar to Z2, we have

Z1 ≤
(∣∣∣∣∣∣∣∣∣(MAj ,Aj

)−1 − (M∗
Aj ,Aj

)−1
∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣(M∗

Aj ,Aj
)−1
∣∣∣∣∣∣∣∣∣
∞

)
‖GAj

‖∞

≤
(

∆ +
∣∣∣∣∣∣∣∣∣(M∗

Aj ,Aj
)−1
∣∣∣∣∣∣∣∣∣
∞

)
‖GAj

‖∞

≤
(

2D2
max

∣∣∣∣∣∣∣∣∣MAj ,Aj
−M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

)
‖GAj

‖∞ (89)

Putting together (89) and (88) completes the proof.
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