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Abstract

In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a

sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number

of input-state data samples. We characterize the properties of this estimator under high-dimensional scaling, where

the growth rate of the system dimension is comparable to or even faster than that of the number of available

sample trajectories. In particular, using contemporary results on high-dimensional statistics, we show that the proposed

estimator results in a small element-wise error, provided that the number of sample trajectories is above a threshold.

This threshold depends polynomially on the size of each block and the number of nonzero elements at different rows

of input and state matrices, but only logarithmically on the system dimension. A by-product of this result is that the

number of sample trajectories required for sparse system identification is significantly smaller than the dimension of

the system. Furthermore, we show that, unlike the recently celebrated least-squares estimators for system identification

problems, the method developed in this work is capable of exact recovery of the underlying sparsity structure of the

system with the aforementioned number of data samples. Extensive case studies on synthetically generated systems

and multi-agent systems are offered to demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

With their ever-growing size and complexity, real-world dynamical systems are hard to model. Today’s systems

are complex and large, often with a massive number of unknown parameters, which render them doomed to the so-

called curse of dimensionality. Therefore, system operators should rely on simple and tractable estimation methods

to identify the dynamics of the system via a limited number of recorded input-output interactions, and then design

control policies to ensure the desired behavior of the entire system. The area of system identification is created to

address this problem [1].

In this work, the objective is to employ modern results on high-dimensional statistics to reduce the sample

complexity for one of the most fundamental classes of systems in control theory, namely linear time-invariant (LTI)

systems with perfect state measurements. This type of dynamical system forms the basis of many classical control
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problems, such as Linear Quadratic Regulator and Linear Quadratic Gaussian problems. Our results are built upon

the fact that, in many practical large-scale systems, the states and inputs exhibit sparse interactions with one another,

which in turn translates into a sparse representation of the state-space equations of the system. Driven by the existing

non-asymptotic results on the classical Lasso problem, the main focus of this paper is on the block-regularized

estimators for the system identification problem, where the goal is to promote sparsity on different blocks of input

and state matrices. To this goal, the `∞-norms of the blocks are penalized instead of their `1-norms. One motivation

behind employing this type of estimator stems from topology extraction in consensus networks, especially in the

multi-agent setting [2], [3]. In this problem, given a number of subsystems (agents) whose interactions are defined

via an unknown sparse topology network, the objective is to estimate the state-space model governing the entire

system based on a limited number of input-output sample trajectories. Since the subsystems have their own local

state and input vectors with potentially different sizes, the parameters of the state-space model admit a block-sparse

structure.

A. Related Works

Asymptotic Guarantees: System identification is a well-established area of research in control theory, with related

preliminary results dating back to 1960s. Standard reference textbooks on the topic include [4]–[7], all focusing

on establishing asymptotic consistency of different types of estimators (e.g. least-squares, prediction error, and

maximum likelihood). Although these results shed light on the theoretical consistency of the existing methodologies,

they are not applicable in the finite time/sample settings. In many applications, including neuroscience, transportation

networks, and gene regulatory networks, the dimensionality of the system is overwhelmingly large, often surpassing

the number of available input-output data [8]–[10]. Under such circumstances, the dynamics of the system should be

estimated under the large dimension-small sample size regime and classical approaches for checking the asymptotic

consistency of an estimator face major breakdowns. Simple examples of such failures are widespread in high-

dimensional statistics. For instance, it is well-known that the least-squares estimators, which are widely used in

system identification problems, cease to exist uniquely when the sample size is smaller than the dimension of the

system [11].

Finite-Time Guarantees: Contemporary results in statistical learning as applied to system identification seek

to characterize finite time and finite data rates, relying heavily on tools from sample complexity analysis and

concentration of measure. Such finite-time guarantees provide estimates of both system parameters and their

uncertainty, which allows for a natural bridge to robust/optimal control. In [12], it was shown that under full state

observation, if the system is driven by Gaussian noise, the ordinary least squares estimate of the system matrices

constructed from independent data points achieves order optimal rates that are linear in the system dimension. This

result was later generalized to the single trajectory setting for (i) marginally stable systems in [13], (ii) unstable

systems in [14], and (iii) partially observed stable systems in [15]–[18].

Sparse System Identification: Recently, special attention has been devoted to the sparse system identification

problem, where the states and inputs are assumed to possess localized or low-order interactions. These methods
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include, but are not restricted to, selective `1-regularized estimator [19], identification based on compressive

sensing [20], sparse estimation of polynomial system dynamics [21], kernel-based regularization [22], and low

rank estimation in frequency domain [23]. On the other hand, with the unprecedented interest in data-driven control

approaches, such as model-free reinforcement learning, robust control, and adaptive control [24]–[26], a question

arises as to what the minimum number of input-output data samples should be to guarantee a small error in the

estimated model. Answering this question has been the subject of many recent studies on the sample complexity of

the system identification problem [12], [27]–[30]. Most of these results are tailored to a specific type of dynamics,

depend on the stability of the open-loop system, or do not exploit the a priori information about the structure of

the system.

B. Contributions:

In this work, we introduce a regularized estimator for recovering the true block-sparsity of an LTI system. We show

that the proposed estimator is guaranteed to achieve infinitesimal estimation error with a small number of samples.

In particular, we use an `1/`∞-regularized least-squares estimator, i.e., a least-squares estimator accompanied by

a `∞ regularizer on different blocks, and show that, with an appropriate scaling of the regularization coefficient,

Ω(kmax(D log(n̄ + m̄) +D2)) sample trajectories are enough to guarantee a small estimation error with a high

probability, where kmax is the maximum number of nonzero elements in the rows of input and state matrices, D

is the size of the largest block in these matrices, and n̄ and m̄ are the number of row blocks in the state and input

matrices, respectively. This is a significant improvement over the recently derived sample complexity of Ω(n+m)
for the least-squares estimator (n and m are the state and input dimensions, respectively), in the case where the

system is sparse and the sizes of all blocks are small relative to the system dimension. While the traditional Lasso

is heavily studied in the literature [31], [32], the high-dimensional behavior of the block-regularized estimator is

less known when the dimensions of blocks are arbitrary. The paper [33] analyzes the high-dimensional consistency

of this estimator when each block of the regression parameter is a row vector. Furthermore, it assumes that the

regression parameter consists of only one column of blocks. In an effort to make these results applicable to the

block-sparse system identification problem, we significantly generalize the existing non-asymptotic properties to

problems with an arbitrary number of blocks, each with general sizes.

Moreover, we derive upper bounds on the element-wise error of the proposed estimator. In particular, we prove

that Ω(k2
max(D log(n̄ + m̄) +D2)) sample trajectories is enough to ensure that the estimation error decreases at

the rate O(
√

(D log(n̄ + m̄) +D2)/d), where d is the number of available sample trajectories. We show that if

the number of nonzero elements in the columns (in addition to the rows) of input and state matrices are upper

bounded by kmax, the operator norm of the estimation error of the proposed estimator is arbitrarily smaller than

that of its un-regularized least-squares counterpart introduced in [12]. Another advantage of the proposed estimator

over its least-squares analog is its exact recovery property. More specifically, we show that while the least-squares

estimator is unable to identify the sparsity pattern of the input and state matrices for any finite number of samples,

the proposed estimator recovers the true sparsity pattern of these matrices with a sublinear number of sample
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trajectories. It is worthwhile to mention that this work generalizes the results in [29], where the authors use a

similar regularized estimator to learn the dynamics of a particular type of systems. However, [29] ignores the block

structure of the system and assumes autonomy and inherent stability, all of which will be relaxed in this work.

To demonstrate the efficacy of the developed regularized estimator, two case studies are offered on synthetically

generated systems and multi-agent systems.

This work is a significant extension of our previous conference papers on Lasso-type estimators for system

identification [34] and non-asymptotic analysis of block-regularized linear regression problems [35]. In particular,

by combining the properties of the block-regularized regression and the characteristics of LTI systems, we provide

a unified sparsity-promoting framework for estimating the parameters of the system with arbitrary block structures.

To this goal, we have generalized our theoretical results in [34] and [35] to account for partially-sparse structures.

We explain the effect of different parameters of the problem—such as input energy and the length of the time

horizon—on the sample complexity of the proposed estimator. Furthermore, it is shown that the required conditions

for the validity of the proposed results are not an artifact of the proposed estimator, but are rather inherent to the

problem. Based on these results, we introduce a class of k-sparse systems where the conditions of our theorem

translate into a set of sufficient and (almost) necessary conditions for the correct recovery of the system dynamics.

Furthermore, we relax certain assumptions on the structure of the true system that were initially required in [34],

and provide comprehensive discussions and more relevant simulations on the performance of the proposed method.

Notations: For a matrix M , the symbols ∥M∥F , ∥M∥2, ∥M∥0, ∥M∥1, and ∥M∥∞ denote its Frobenius, operator,

number of nonzero elements, `1/`1, and `∞/`∞ norms, respectively. Furthermore, κ(M) refers to its 2-norm

condition number, i.e., the ratio between its maximum and minimum singular values. Given integer sets I and J ,

the notation MIJ refers to the submatrix of M whose rows and columns are indexed by I and J , respectively.

The symbols M∶,j and Mi,∶ refer to the jth column and ith row of M , respectively. Given the sequences f1(n)
and f2(n), the notations f1(n) = O(f2(n)) and f1(n) = Ω(f2(n)) imply that there exist c1 < ∞ and c2 > 0 such

that f1(n) ≤ c1f2(n) and f1(n) ≥ c2f2(n), respectively. Furthermore, f1(n) = Θ(f2(n)) is used to imply that

f1(n) = O(f2(n)) and f1(n) = Ω(f2(n)). Finally, f1(n) = o(f2(n)) is used to show that f1(n)/f2(n) → 0 as

n → ∞. A zero-mean Gaussian distribution with covariance Σ is shown as N(0,Σ). Given a function f(x), the

expression arg min f(x) refers to its minimizer. For a set I, the symbol ∣I∣ denotes its cardinality.

II. PROBLEM FORMULATION

Consider the LTI system

x[t + 1] = Ax[t] +Bu[t] +w[t] (1a)

where t is the time step, A ∈ Rn×n is the state matrix, and B ∈ Rn×m is the input matrix. Furthermore, x[t] ∈ Rn,

u[t] ∈ Rm, and w[t] ∈ Rn are the state, input, and disturbance vectors at time t, respectively. The dimension of

the system is defined as m + n. It is assumed that the input disturbance vectors are identically distributed and

independent (i.i.d.) with distribution N(0, σ2
wI) across different times. In this work, we assume that the matrices A
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and B are sparse and the goal is to estimate them based on a limited number of sample trajectories, i.e. a sequence

{(x(i)[τ], u(i)[τ])}Tτ=0 with i = 1,2, ..., d, where d is the number of available sample trajectories. The ith sample

trajectory {(x(i)[τ], u(i)[τ])}Tτ=0 is obtained by running the system from t = 0 to t = T and collecting the input

and state vectors. Note that in general, one may consider two general approaches to obtain the sample input-output

trajectories for the system identification problem:

Fixed d, and variable T : In this approach, one sets the number of sample trajectories d to a fixed value (e.g.,

d = 1) and instead, chooses a sufficiently long time horizon T to obtain enough information about the dynamics

of the system. Notice that this is only viable when the system is stable. In other words, one needs to assume that

either the system is inherently stable, or there exists an initial stabilizing controller in place to be able to use this

approach. Note that this assumption of stability is necessary, as even a simple least-squares estimator may not be

consistent if the system has unstable modes [14].

Fixed T , and variable d: In this approach, the length of the time horizon T is fixed and instead, the number

of sample trajectories is chosen to be sufficiently large to collect enough information about the dynamics of the

system. Notice that in this method, one needs to reset the initial state of the system at the beginning of each sample

trajectory. However, unlike the previous method, its applicability is not contingent upon the stability of the true

system.

Due to the aforementioned theoretical and practical limitations, one can only use the second approach for unstable

systems.

Given the sample trajectories {(x(i)[τ], u(i)[τ])}⊺τ=0 for i = 1,2, ..., d, one can obtain an estimate of (A,B) by

solving the following least-squares optimization problem:

min
A,B

d

∑
i=1

T−1

∑
t=0

∥x(i)[t + 1] − (Ax(i)[t] +Bu(i)[t])∥
2

2
(2)

In order to describe the behavior of the least-squares estimator, define

Y (i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i)[1]⊺

⋮
x(i)[T ]⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i)[0]⊺ u(i)[0]⊺

⋮ ⋮
x(i)[T −1]⊺ u(i)[T −1]⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W (i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(i)[0]⊺

⋮
w(i)[T − 1]⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

for every sample trajectory i = 1,2, ..., d. Furthermore, let Y , X , and W be defined as vertical concatenations of

Y (i), X(i), and W (i) for i = 1,2, ..., d, respectively. Finally, denote Ψ = [A B]⊺ as the unknown system parameter

and Ψ∗ as its true value. Based on these definitions, it follows from (1) that

Y =X ⋅Ψ +W (4)

The system identification problem is then reduced to estimating Ψ based on the observation matrix Y and the
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design matrix X . Consider the following least-squares estimator:

Ψls = arg min
Ψ

∥Y −XΨ∥2
F (5)

One can easily verify the equivalence of (2) and (5). The optimal solution of (5) can be written as

Ψls = (X⊺X)−1X⊺Y = Ψ∗ + (X⊺X)−1X⊺W (6)

Notice that Ψls is well-defined and unique if and only if X⊺X is invertible, which necessitates d ≥ n +m. The

estimation error is then defined as

E = Ψls −Ψ∗ = (X⊺X)−1X⊺W (7)

Thus, one needs to study the behavior of (X⊺X)−1X⊺W in order to control the estimation error of the least-

squares estimator. However, since the state of the system at time t is affected by random input disturbances at times

0,1, ...t − 1, the matrices X and W are correlated, which renders (7) hard to analyze. In order to circumvent this

issue, [12] simplifies the estimator and considers only the state of the system at time T in Y (i). By ignoring the

first T − 1 rows in Y (i), X(i), and W (i), one can ensure that the random matrix (X⊺X)−1X⊺ is independent of

W . Therefore, it is assumed in the sequel that

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)[T ]⊺

⋮
x(d)[T ]⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)[T −1]⊺ u(1)[T −1]⊺

⋮ ⋮
x(d)[T −1]⊺ u(d)[T −1]⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(1)[T − 1]⊺

⋮
w(d)[T − 1]⊺

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

With this simplification, [12] shows that, with input vectors u(i)[t] chosen randomly from N(0, σ2
uI) for every

t = 1,2, ..., T − 1 and i = 1,2, ..., d, the least-squares estimator requires at least d = Ω(m + n + log(1/δ)) sample

trajectories to guarantee ∥E∥2 = O (
√

(m + n) log(1/δ)/d) with probability of at least 1 − δ. In what follows, a

block-regularized estimator will be introduced that exploits the underlying sparsity structure of the system dynamics

to significantly reduce the number of sample trajectories for an accurate estimation of the parameters. To streamline

the presentation, the main technical proofs are deferred to Section IV.

Remark 1. We assume that the covariance matrices for the input and the disturbance noise have diagonal structure

(shown as σ2
uI and σ2

wI , respectively), which implies that there is no dependency between different elements of

the input and disturbance vectors. This assumption is made without loss of generality to simplify the presentation

of the technical results of this paper. Indeed, these covariance matrices can be replaced by Σu and Σw without

substantially affecting the findings of this work.

III. MAIN RESULTS

Suppose that A and B can be partitioned as A = [A(i,j)] and B = [B(k,l)] where (i, j) ∈ {1, ..., n̄}×{1, ..., n̄} and

(k, l) ∈ {1, ..., n̄}×{1, ..., m̄}. A(i,j) is the (i, j)th block of A with size ni×nj . Similarly, B(k,l) is the (k, l)th block



7

of B with size nk ×ml. Note that ∑n̄i=1 ni = n and ∑m̄i=1mi =m. Suppose that it is known a priori that all elements

in each block A(i,j) or B(k,l) are simultaneously zero or nonzero. This implies that, as long as one element in

A(i,j) or B(k,l) is nonzero, there is no reason to promote sparsity in the remaining elements of the corresponding

block. Clearly, this kind of block-sparsity constraint is not correctly reflected in (2). To simplify the presentation,

we use the notation Ψ = [A B]⊺. Note that Ψ(i,j) = (A(j,i))⊺ for i ∈ {1, ..., n̄} and Ψ(i,j) = (B(j,i−n̄))⊺ for

i ∈ {n̄+ 1, ..., n̄+ m̄}. In order to recover the true block-sparsity of A and B, one can resort to an `1/`∞ variant of

the Lasso problem—known as the block-regularized least-squares (or simply block-regularized) problem:

Ψ̂ = arg min
Ψ

1

2d
∥Y −XΨ∥2

F + λd∥Ψ∥block (9)

where ∥Ψ∥block is defined as the summation of ∥Ψ(i,j)∥∞ over (i, j) ∈ {1, ..., n̄ + m̄} × {1, ..., n̄}. D is used to

denote the maximum size of the blocks of Ψ. Under the sparsity assumption on (A,B), we will show that the non-

asymptotic statistical properties of Ψ̂ significantly outperform those of Ψls. In particular, the primary objective is to

prove that ∥Ψ̂−Ψ∗∥∞ decreases at the rate O(
√
D log(n +m) +D2 log(1/δ)/d) with probability of at least 1−δ and

with an appropriate scaling of the regularization coefficient, provided that d = Ω (k2
max (D log(n̄ + m̄) +D2 log(1/δ))).

Here, kmax is the maximum number of nonzero elements in the columns of [A B]⊺. Comparing this number with

the required lower bound Ω(n+m+ log(1/δ)) on the number of sample trajectories for the least-squares estimator,

we conclude that the proposed method needs significantly fewer samples when A and B are sparse. The third

objective is to prove that this method is able to find the correct block-sparsity structure of A and B with high

probability. In contrast, it will be shown that the solution of the least-squares estimator is fully dense for any finite

number of sample trajectories, and hence, it cannot correctly extract the sparsity structures of A and B. We will

showcase the superior performance of the block-regularized estimator both in sparsity identification and estimation

accuracy in simulations.

To present the main results of this work, first note that

x(i)[T −1]

=AT−2Bu(i)[0]+AT−3Bu(i)[1]+⋯+Bu(i)[T−2]

+AT−2w(i)[0]+AT−3w(i)[1]+⋯+w(i)[T−2] (10)

where, without loss of generality, the initial state is assumed to be zero for every sample trajectory. The results can

be readily extended to the case where the initial state is an unknown random vector with Gaussian distribution.

Suppose that u(i)[t] and w(i)[t] are i.i.d samples of N(0, σ2
uI) and N(0, σ2

wI), respectively. Therefore, (10) and (8)

imply that

X⊺
i,∶ ∼ N (0, Σ̃) (11)
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where Xi,∶ is the ith row of X and

Σ̃ =
⎡⎢⎢⎢⎢⎢⎣

C⊺C 0

0 σ2
uI

⎤⎥⎥⎥⎥⎥⎦
(12a)

C =
⎡⎢⎢⎢⎢⎢⎣

σuF
⊺
T

σwG
⊺
T

⎤⎥⎥⎥⎥⎥⎦
(12b)

FT = [AT−2B AT−3B . . . B] (12c)

GT = [AT−2 AT−3 . . . I] (12d)

The matrix C is referred to as the combined controllability matrix in the sequel. Define Aj(Ψ) = {i ∶ Ψ(i,j) /= 0}.

Unless stated otherwise, Aj is used to refer to Aj(Ψ∗). Define Acj as the complement of Aj . For T ⊆ {1, ..., n̄+m̄},

denote I(T ) as the index set of rows in Ψ∗ corresponding to the blocks {Ψ∗(i,∶) ∶ i ∈ T }. For an index set U , define

XU as a d × ∣U∣ submatrix of X after removing the columns with indices not belonging to U . With a slight abuse

of notation, X(i), XAj , and XAc
j

are used to denote XI({i}), XI(Aj), and XI(Ac
j) when there is no ambiguity.

Similarly, Σ̃(i),Aj
and Σ̃Aj ,Aj are used in lieu of Σ̃I({i}),I(Aj) and Σ̃I(Aj),I(Aj), respectively. Denote kj as the

maximum number of nonzero elements in any column of Ψ∗(∶,j) which is the jth block column of Ψ∗. Finally,

define

nmax = max
1≤i≤n̄

ni, mmax = max
1≤i≤m̄

mi,

pmax = max{nmax,mmax} , kmax = max
1≤j≤n̄

kj ,

σ2
max = max

1≤i≤n+m
Σ̃ii (13)

The following set of assumptions plays a key role in deriving the main result of this paper:

Assumption 1. By fixing the time horizon T , we assume that the following conditions hold for all finite system

dimensions:

A1. (Mutual Incoherence Property): There exists a number γ ∈ (0,1] such that

max
j=1,...,n̄

{max
i∈Ac

j

∥Σ̃(i),Aj
(Σ̃Aj ,Aj)−1∥

1
} ≤ 1 − γ (14)

A2. (Bounded eigenvalue): There exist numbers 0 < Λmin < ∞ and 0 < Λmax < ∞ such that

Λmin ≤ λmin(Σ̃) ≤ λmax(Σ̃) ≤ Λmax (15)

A3. (Bounded minimum value): There exists a number tmin > 0 such that

tmin ≤ min
1≤j≤n̄

min
i∈Aj

∥Ψ∗(i,j)∥
∞

(16)

A4. (Block sizes): There exist numbers αn, αm < ∞ such that

nmax = O ((n̄ + m̄)αn) (17a)

mmax = O ((n̄ + m̄)αm) (17b)
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The mutual incoherence property in Assumption A1 is a commonly known condition for the exact recovery of

unknown parameters in compressive sensing and classical Lasso problems [32], [36]–[38]. This assumption entails

that the effect of those submatrices of Σ̃ corresponding to zero (unimportant) elements of Ψ on the remaining entries

of Σ̃ should not be large. Roughly speaking, this condition guarantees that the unknown parameters are recoverable

in the noiseless scenario, i.e. when W = 0. If the recovery cannot be guaranteed in the noise-free setting, then there

is little hope for the block-regularized estimator to recover the true structure of A and B when the system is subject

to noise. This assumption is satisfied in all of our simulations.

The bounded eigenvalue condition in Assumption A2 entails that the condition number of Σ̃ is bounded away

from 0 and ∞ for all finite system dimensions. Assuming that the values σu and σw do not scale with the system

dimension, it is easy to verify that min{σ2
u, σ

2
w} ≤ Λmin ≤ σ2

u. However, as will be shown later, the value of Λmax

can change with respect to the time horizon T . In particular, it will be later shown that for highly unstable systems,

Σ̃ becomes severely ill-conditioned as the time horizon increases, which in turn makes the system identification

problem difficult to solve. Furthermore, this assumption implies that there exists a constant σ̄2
max < ∞ such that

max1≤i≤n+mΣii ≤ σ̄2
max for every finite system dimension.

Assumption A3 implies that, independent of the system dimensions, there always exists a strictly positive gap

between the zero and nonzero elements of A and B. This assumption holds in almost all practical settings and will

facilitate the exact sparsity recovery of the parameters of the system.

Finally, Assumption A4 requires that the maximum size of the blocks in Ψ∗ be polynomially bounded by the

number of its block columns. For instance, n̄ = O(1) and m̄ = O(1) violate this assumption since it implies that

nmax = Ω((n̄ + m̄)logn) and mmax = Ω((n̄ + m̄)logm). It is worthwhile to mention that Assumption A4 results in

kmax = O((n̄ + m̄)αk) for some number αk < ∞; this will be used later in the paper.

Remark 2. Note that, due to Assumption A2, κ(Σ̃) = O(1). However, this quantity will not be removed from

the big-O analysis of our subsequent theorems and corollaries to demonstrate its effect on the high-dimensional

properties of the developed estimator.

Define D = pmaxnmax, which is the maximum size of the blocks in Ψ.

Theorem 1 (block-wise regularization). Upon choosing

λd = Θ
⎛
⎝
σmax

√
D log(n̄ + m̄) +D2 log(1/δ)

d

⎞
⎠

(18a)

d = Ω (κ(Σ̃)2kmax (D log(n̄ + m̄) +D2 log(1/δ))) (18b)

the following statements hold with probability of at least 1 − δ:

1. Ψ̂ is unique and has the same nonzero blocks as Ψ∗.
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2. We have

g = ∥Ψ̂−Ψ∗∥∞

=O
⎛
⎝
κ(Σ̃)

⎛
⎝

1+
√

kmax(kmaxnmax+log(n̄ + m̄)+log(1/δ))
d

⎞
⎠

×
√

D log(n̄+m̄)+D2 log(1/δ)
d

⎞
⎠

(19)

Theorem 1 shows that the minimum number of required sample trajectories is a quadratic function of the maximum

block size. Therefore, only a small number of samples is enough to guarantee the uniqueness, exact block-sparsity

recovery, and small estimation error for sparse systems, assuming that the sizes of the blocks are significantly

smaller than the system dimensions.

Corollary 1. Assume that nmax = O(nβn) and mmax = O(mβm) for some βn > 0 and βm > 0. Then,

λd = Θ
⎛
⎝
σmax(n +m)(βn+βm)

√
log(1/δ)

d

⎞
⎠

(20a)

d = Ω(κ(Σ̃)2k2
max(n +m)2(βn+βm) log(1/δ)) (20b)

is enough to guarantee the exact sparsity recovery of Ψ∗ and

∥Ψ̂−Ψ∗∥∞ = O
⎛
⎝
κ(Σ̃)(n +m)(βn+βm)

√
log(1/δ)

d

⎞
⎠

(21)

with probability of at least 1 − δ.

Proof. The proof follows from Theorem 1. The details are omitted for brevity. ◻
Corollary 1 analyzes the behavior of the proposed estimator for the polynomial scaling of the block size. It can

be seen that the size of the required sample trajectories heavily depends on the growth rate of the maximum block

size of Ψ. Although the sampling rate is still sublinear when βn + βm < 1/2, it may surpass the system dimension

if βn + βm > 1/2. A question arises as to whether one can resort to the ordinary least-squares estimator in lieu of

the proposed block-regularized estimator for the cases where βn + βm > 1/2 since the proposed estimator requires

d = Ω((n+m)1+ε log(1/δ)) for some ε > 0 whereas d = Θ(n+m+ log(1/δ)) is enough to guarantee the uniqueness

of the least-squares estimator. This will be addressed in the next subsection.

A. Comparison to Least-Squares

In this subsection, we will prove that the least-squares estimator does not extract the correct sparsity structure of

Ψ for any finite number of sample trajectories.

Theorem 2. If A and B are not fully dense matrices, Ψls does not recover the support of Ψ∗ for any finite number

of sample trajectories with probability 1.

Proof. Define R = ((X⊺X)−1X⊺)⊺, and note that R and W are independent random variables due to the

construction of X . Now, suppose that Ψ∗
ij = 0. We show that, with probability zero, Eij = ∣(Ψls)ij − Ψ∗

ij ∣ = 0
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holds. Note that Eij = R⊺
∶,iW∶,j . If R∶,i /= 0, then Eij is a linear combination (with at least one nonzero coefficient)

of identically distributed normal random variables with mean zero and variance (Σw)jj . Since R∶,i and W∶,j are

independent, we have Eij = 0 with probability zero. Now, assume that R∶,i = 0. This means that the ith row of R⊺

is a zero vector. This, in turn, implies that the ith row of R⊺X is zero. However, R⊺X = (X⊺X)−1X⊺X = I , which

is a contradiction. This completes the proof. ◻
Define h(n,m) =

√
(n +m) log(1/δ)/d and recall that ∥Ψls − Ψ∗∥2 = O(h(n,m)). In the next corollary, we

show that, under additional sparsity conditions, the operator norm of the estimation error for Ψ̂ becomes arbitrarily

smaller than h(n,m) as the system dimension grows.

Corollary 2. Assume that the number of nonzero elements at different rows and columns of Ψ∗ is upper bounded

by kmax. Furthermore, suppose that λd satisfies (18a) and

d = Ω (κ(Σ̃)2k2
max (D log(n̄ + m̄) +D2 log(1/δ))) (22)

Then, we have

∥Ψ̂−Ψ∗∥2=O
⎛
⎝
κ(Σ̃)kmax

√
D log(n̄+m̄)+D2 log(1/δ)

d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

v(n,m)

⎞
⎠

(23)

with probability of at least 1 − δ. Furthermore, we have

v(n,m)
h(n,m) → 0 as (n,m) → ∞ (24)

provided that

kmaxD = o(
√

n +m
log(n +m)) (25)

Proof. One can use Holder’s inequality to write

∥Ψ̂−Ψ∗∥2 ≤
√

∥Ψ̂−Ψ∗∥1∥Ψ̂−Ψ∗∥∞ ≤ kmax∥Ψ̂−Ψ∗∥∞ (26)

On the other hand, under (22), it can be verified that
√

kmax(kmaxnmax+log(n̄ + m̄)+log(1/δ))
d

= O(1) (27)

Combined with (26) and Theorem 1, this certifies the validity of (23). It remains to prove the correctness of (24).

Note that under (25), we have

k2
maxD log(n̄ + m̄) = o (n +m) (28a)

k2
maxD

2 = o (n +m) (28b)

Combined with the definitions of h(n,m) and v(n,m), this completes the proof. ◻
Corollary 2 describes the settings under which our proposed method significantly outperforms the least-squares

estimator in terms of the operator norm of the errors. This improvement is more evident for those systems where the

states and inputs have sparse interactions and the block sizes in A and B are smaller than the system dimensions.
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A class of such systems is multi-agent networks where the agents interact only locally and their total number

dominates the dimension of each individual agent.

B. Controllability and the Effect of T

Notice that the minimum number of required sample trajectories and the element-wise error of the estimated

parameters depend on κ(Σ̃). Recall that min{σ2
w, σ

2
u} ≤ Λmin ≤ σ2

w, independent of T . Therefore, the value of

κ(Σ̃) is governed by the maximum eigenvalue of C⊺C. Roughly speaking, λmax(C⊺C) quantifies the easiest-to-

identify mode of the dynamical system. Therefore, Theorem 1 imply that the sample complexity of the proposed

block-regularized estimator depends on the modes of the system, as well as the expected energy of the input and

disturbance noise. In particular, by fixing σu and σw, only a small number of samples is required to accurately

identify the dynamics of the system if all of its modes are easily excitable. The dependency of the estimation error

on the modes of the system is also reflected in the non-asymptotic error bound of the least-squares estimator in [12].

This is completely in line with the conventional results on the identifiability of dynamical systems: independent

of the method in use, it is significantly harder to identify the parameters of the system accurately if it possesses

nearly-hidden modes.

Furthermore, notice that FT , GT , and, hence, λmax(C⊺C) depend directly on the length of the time horizon

T for each sample trajectory. In what follows, we will show that for highly unstable systems, λmax(C⊺C) can

grow exponentially fast in terms of T and, hence, short sample trajectories are more desirable in estimating the

parameters of such unstable systems. To better understand this, assume that the spectral radius of A—shown as

ρ(A)—is greater than one, it is diagonalizable, and n is fixed. One can easily verify that the following chain of

inequalities holds:

λmax(Σ̃) ≥ λmax(σ2
uFTF

⊺
T + σ2

wGTG
⊺
T )

≥ max
i

{((AT−2 (AT−2)⊺)
ii
)

2
}

≥ 1

n
∥AT−2∥∞

≥ 1

n
ρ(A)T−2 (29)

This exponential dependency is also empirically observed in our numerical experiments. Furthermore, the connection

between the identifiability of the system and the number of required sample trajectories to guarantee a small

estimation error will be elaborated through different case studies in Section V.

C. Mutual Incoherency

In what follows, we will analyze the Assumption A1 about the mutual incoherency of the covariance matrix

Σ̃. In particular, we will show that the possible limitations that arise from Assumption A1 are not artifacts of the

proposed method, but rather stem from a fundamental limitation of any sparsity recovery technique for the system

identification problem that is based on sparsity promoting techniques. For simplicity of the subsequent arguments,
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assume that the size of each block is equal to 1, and that the oracle estimator can measure the disturbance matrix

W . Furthermore, suppose that the estimator can collect and work with an infinite number of sample trajectories.

Under these assumptions, the oracle estimator should solve the following optimization problem to estimate the

parameters of the system:

min
Ψ

∥Ψ∥0 (30a)

s.t. XΨ = Y −W (30b)

Notice that the oracle estimator cannot be obtained in practice since: 1) the exact value of the disturbance noise is

not available, 2) only a finite number of sample trajectories can be collected, and 3) the corresponding optimization

is non-convex and NP-hard in its worst case.

As mentioned before, there are fundamental limits on the performance of the introduced oracle estimator. To

explain this, we introduce the mutual-coherence metric for a matrix. For a given matrix A ∈ Rt1×t2 , its mutual-

coherence µ(A) is defined as

µ(A) = max
1≤i<j≤t2

∣A⊺
∶,iA∶,j ∣

∥A∶,i∥2∥A∶,j∥2
(31)

In other words, µ(A) measures the maximum correlation between distinct columns of A (with a slight abuse of

notation, we assume that 1
µ(A) = +∞ if µ(A) = 0). Reminiscent of the classical results in the compressive sensing

literature, it is well-known that the optimal solution Ψ∗ of (30) is unique if the identifiability condition

∥Ψ∗
∶,j∥0 <

1

2
(1 + 1

µ(X)) (32)

holds for every j = 1,2, ..., n (see, e.g., Theorem 2.5 in [39]). Furthermore, this bound is tight, implying that there

exists an instance of the problem for which the violation of ∥Ψ∗
∶,j∥0 < 1

2
(1 + 1

µ(X)) for some j results in the

non-uniqueness of the optimal solution. On the other hand, one can invoke the Central Limit Theorem to show that
1
d
X⊺X = Σ̃ almost surely as d → ∞. Furthermore, recall the definition of the combined controllability matrix C

in 12b. This, together with the definition of Σ̃, implies that

µ(X) = max
1≤i<j≤m+n

∣X⊺
∶,iX∶,j ∣

∥X∶,i∥2∥X∶,j∥2

= max
1≤i<j≤n

∣C⊺
∶,iC∶,j ∣

∥C∶,i∥2∥C∶,j∥2
= µ(C) (33)

According to the above equality, the correlation between different columns of C plays a crucial role in the

identifiability of the true parameters: as µ(C) becomes smaller, the oracle estimator can correctly identify the

structure of Ψ for a wider range of sparsity levels.

Revisiting Assumption A1, one can verify that the mutual incoherency condition is reduced to the following

inequality when the size of each block is equal to one:

∥(C⊺
∶,Aj

C∶,Aj)−1C⊺
∶,Aj

C∶,k∥
1
≤ 1 − α,

∀k ∈ Acj , j = 1,2, . . . , n (34)
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where, with a slight abuse of notation, we use Aj to denote the set {i ∶ Aij /= 0}. Notice that, similar to (32),

the above condition is expected to be satisfied when different columns of C are nearly orthogonal, i.e., when the

elements in C⊺
∶,Aj

C∶,k have small magnitudes. In particular, we introduce a class of k-sparse dynamical systems for

which the above condition is equivalent to (32) (modulo a constant factor).

k-sparse systems: Consider a class of problems where each row or column of A has at most k nonzero entries

and B is diagonal. Without loss of generality and to simplify the subsequent derivations, suppose that the following

assumptions hold:

- B is equal to identity matrix and diagonal entries of A are equal to 1. Moreover, the magnitude of each

off-diagonal entry of A is upper bounded by ϕ > 0.

- T is set to 3.

- σu and σw are less than or equal to 1.

Proposition 1. For k-sparse systems with k ≥ 3, the following statements hold:

- There exists an instance for which the identifiability condition fails to hold for the oracle estimator if ϕ ≥ 3
k

.

- The mutual incoherency condition holds if ϕ < σu+σw

9k
.

Proof. The first statement can be easily verified. To prove the second statement, it suffices to provide separate upper

bounds for ∥(C⊺
∶,Aj

C∶,Aj)−1∥
1

and ∥C⊺
∶,Aj

C∶,k∥
1
. In particular, one can verify that the ∥(C⊺

∶,Aj
C∶,Aj)−1∥

1
is upper

bounded by 1
(σu+σw)−3(k−1)ϕ after controlling different terms of its Taylor expansion. Similarly, ∥C⊺

∶,Aj
C∶,k∥

1
is

upper bounded by 3(σu+σw)kϕ. Combining these bounds implies that (34) holds for a strictly positive α, provided

that ϕ < σu+σw

9k
. The details are omitted for brevity. ◻

The above proposition shows that, for this class of dynamical systems, the mutual incoherency is at most a

constant factor away from the aforementioned identifiability condition for the oracle estimator, confirming the

non-conservativeness of the proposed condition.

IV. PROOFS

A number of preliminary definitions and lemmas are required to present the proof of Theorem 1.

Definition 1 (sub-Gaussian random variable). A zero-mean random variable x is sub-Gaussian with parameter σ2

if there exists a constant number c < ∞ such that

P(∣x∣ > t) ≤ c ⋅ exp(− t2

2σ2
) (35)

Lemma 1. Given a set of zero-mean sub-Gaussian variables xi with parameters σi for i = 1,2, ...,m, the inequality

P(max
i

∣xi∣ > t) ≤ c ⋅ exp(− t2

2 maxi σ2
i

+ logm) (36)

holds for some constant c < ∞.

Define Id as the d × d identity matrix. The next two lemmas are borrowed from [33] and [31], respectively.
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Lemma 2. Given a set of random vectors Xi ∼ N(0, σ2
i Id) for i = 1,2, ...,m and d > 2 logm, the inequality

P(max
i

∥Xi∥2
2 ≥ 4σ2d) ≤ exp(−d

2
+ logm) (37)

holds, where σ = maxi σi.

Lemma 3. Consider a matrix X ∈ Rm×n whose rows are drawn from N(0,Σ). Assuming that n ≤m, we have

P
⎛
⎝
∥(1

d
X⊺X)

−1

−Σ−1∥
2

≥ 8

Λmin

√
t

m

⎞
⎠
≤ 2 exp(− t

2
) (38)

for every n ≤ t ≤m.

The basic inequalities given below will be used frequently in our subsequent arguments.

Lemma 4. The following statements hold true:

● Given a number of (not necessarily independent) events Ti for i = 1,2, ..., n, the following inequality is satisfied:
n

∑
i=1

P(Ti) − (n − 1) ≤ P(T1 ∩ T2 ∩ ... ∩ Tn) (39)

● Given events B and C together with the complement of C, denoted as Cc, the following inequality holds:

P(B) ≤ P(B∣C) + P(Cc) (40)

The next lemma characterizes the first-order optimality conditions for (9).

Lemma 5 (KKT conditions). Ψ̂ is an optimal solution for (9) if and only if it satisfies

1

d
X⊺X(Ψ̂ −Ψ∗) − 1

d
X⊺W + λdŜ = 0 (41)

for some Ŝ ∈ R(n+m)×n ∈ ∂∥Ψ̂∥block, where ∂∥Ψ̂∥block denotes the sub-differential of ∥ ⋅ ∥block at Ψ̂.

Proof. The proof is straightforward and omitted for brevity. ◻
ŜA and ŜAc are obtained by removing those blocks of Ŝ with indices not belonging to A and Ac, respectively.

The equation (4) can be reformulated as the set of linear equations

Y (∶,j) =XΨ(∶,j) +W (∶,j) ∀j ∈ {1, ..., n̄} (42)

where Y (∶,j), Ψ(∶,j), and W (∶,j) are the jth block column of Y , Ψ, and W , respectively. Based on this definition,

consider the following set of block-regularized subproblems:

Ψ̂(∶,j) = arg min
1

2d
∥Y (∶,j) −XΨ(∶,j)∥2

2 + λd∥Ψ(∶,j)∥block (43)

Define Dj = pmaxnj . The next two lemmas are at the core of our proof for Theorem 1.

Lemma 6 (No false positives). Given arbitrary constants c1, c2 > 1, suppose that λd and d are chosen such that

λd ≥

¿
ÁÁÀ32c1σ2

wσ
2
max

γ2
⋅ (Dj)2 +Dj log(n̄ + m̄)

d
(44a)

d ≥ 72c2σ
2
max

γ2Λmin
⋅ kj(D2

j +Dj log(n̄ + m̄)) (44b)
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Then, with probability of at least

1 − 3 exp ( − (c1 − 1)(Dj + log(n̄ + m̄)))

− 4 exp ( − (c2 − 1)(Dj + log(n̄ + m̄)))
(45)

Ψ̂(∶,j) is unique and its nonzero blocks exclude the zero blocks of Ψ∗(∶,j). In other words, Ψ̂(∶,j) does not have any

false positives.

Recall that due to Assumption A4, one can write nmax = O ((n̄ + m̄)αn) and kmax = O ((n̄ + m̄)αk) for some

αn ≥ 0 and αk ≥ 0.

Lemma 7 (Element-wise error). Given arbitrary constants c3 > 0 and c4 > 1, suppose that Ψ̂ is unique and the set

of its nonzero blocks excludes the zero blocks of Ψ∗. Then, with probability of at least

1 − 2 exp(−(kjnj + c3 log(n̄ + m̄))/2) − 2 exp (−d/2)

− 2 exp ( − 2(c4 − 1)(αn + αk) log(n̄ + m̄)))
(46)

we have

∥Ψ̂(∶,j)−Ψ∗(∶,j)∥∞ ≤
√

36c4(αn+αk)σ2
w log(n̄ + m̄)

Λmind

+ λd
Λmin

⎛
⎝

8
√
kj

√
kjnj + c3 log(n̄ + m̄)

d
+ 1

⎞
⎠
=gj (47)

Furthermore, the zero blocks of Ψ̂(∶,j) exclude the nonzero blocks of Ψ∗(∶,j) if mini∈Aj ∥Ψ(i,j)∥∞ > gj . In other

words, Ψ̂(∶,j) does not have any false negatives if mini∈Aj ∥Ψ(i,j)∥∞ > gj .

In what follows, we will present some preliminaries that are essential in proving Lemmas 6 and 7. Notice that

Ŝ and W have the same dimensions as Ψ̂, and hence, can be similarly partitioned into different blocks. Since

Lemmas 6 and 7 hold for any given column block index j, Ψ(i,j) and Aj will be referred to as Ψ(i) and A in

order to streamline the presentation.

Lemma 8. Q ∈ ∂∥Ψ̃∥block if and only if the following conditions are satisfied for every i ∈ {1,2, ..., n̄ + m̄}:

● If ∥Ψ̃(i)∥∞ /= 0, define M (i) = {(k, l) ∶ Ψ̃(i)kl = ∥Ψ̃(i)∥∞}. Then, Q(i)kl = ηkl ⋅sign(Ψ̃(i)kl ), where ∑(k,l)∈M(i) ηkl = 1

and ηkl = 0 if (k, l) /∈M (i).

● If ∥Ψ̃(i)∥∞ = 0, then ∥Q(i)∥1 ≤ 1.

The proofs of Lemmas 6 and 7 are based on the well-known primal-dual witness approach introduced in [31],

[33], which is defined as follows:

Primal-dual witness approach ( [31], [33]):
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● Step 1: Define the restricted regularized problem as

Ψ̃ =arg min
Ψ∈Rp×r

1

2d
∥Y −XΨ∥2

F + λd∥Ψ∥block (48a)

s.t. Ψ(i) = 0 ∀i ∈ Ac (48b)

whose solution is unique if X⊺
AXA is invertible.

● Step 2: With a slight abuse of notation, Ψ̃ can be written as (Ψ̃A,0). Choose S̃A as an element of the

sub-differential ∂∥Ψ̃A∥block.

● Step 3: Find S̃Ac by solving the KKT equations (41), given Ψ̃ and S̃A. Then, verify

∥S̃(i)∥1 < 1 ∀i ∈ Ac (49)

If (49) can be verified in the last step, it is said that the primal-dual witness (PDW) approach succeeds. The

next lemma unveils a close relationship between the block-regularized estimator, the PDW approach, and the true

regression parameter Ψ∗.

Lemma 9. The following statements hold:

● If the PDW approach succeeds, then Ψ̃ is the unique optimal solution of (9), i.e. Ψ̂ = Ψ̃.

● Conversely, suppose that Ψ̂ is the optimal solution of (9) such that Ψ̂(i) = 0 for every i ∈ Ac. Then, the PDW

approach succeeds.

Proof. The proof is a simple generalization of Lemma 2 in [33]. The details are omitted for brevity.◻ Lemma 9

is the building block of our proofs for Lemmas 6 and 7. In particular, Lemma 9 indicates that in order to show

that the solution of (42) is unique and excludes false positive errors, it is enough to verify that the PDW approach

succeeds with high probability. Then, conditioned on the success of the PDW approach, our focus can be devoted

to the optimal solution of the restricted problem (48) and bounding its difference from the true parameters.

Lemma 10. Define Ψ̃ −Ψ = E. The following equalities hold:

EAc = 0 (50a)

EA = (1

d
X⊺
AXA)−1 1

d
X⊺
AW − (1

d
X⊺
AXA)−1λdS̃A (50b)

S̃Ac = 1

dλd
(X⊺
Ac − (X⊺

AcXA)(X⊺
AXA)−1X⊺

A)W

+ 1

d
X⊺
AcXA(

1

d
X⊺
AXA)−1S̃A (50c)

Proof. To verify (50b) and (50c), note that the KKT condition in Lemma 5 reduces to

1

d
(X⊺
AXA)EA −

1

d
X⊺
AW + λdS̃A = 0 (51a)

1

d
(X⊺
AcXA)EA −

1

d
X⊺
AcW + λdS̃Ac = 0 (51b)

Solving (51a) with respect to EA and substituting the solution in (51b) completes the proof. ◻
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A. Proof of Lemma 6:

As shown in Lemma 9, it is enough to prove that the PDW succeeds with high probability. To this goal, we

show that maxi∈Ac ∥S̃(i)∥1 < 1 with high probability, which results in the success of the PDW approach. Lemma 10

yields that

∥S̃(i)∥1 ≤∥ 1

dλd
(X(i)⊺ − (X(i)⊺XA)(X⊺

AXA)−1X⊺
A)W∥

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z
(i)
1

+ ∥1

d
X(i)

⊺XA(
1

d
X⊺
AXA)−1S̃A∥

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z
(i)
2

(52)

Similar to [33], we will show that maxi∈Ac Z
(i)
1 < γ/2 and maxi∈Ac Z

(i)
2 < 1 − γ/2 with high probability. First,

consider maxi∈Ac Z
(i)
1 . We have

Z
(i)
1 = ∑

(k,l)∈Ψ(i)
∣ 1

dλd
(X(i))∶,k⊺(I −XA(X⊺

AXA)−1X⊺
A)W∶,l

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R
(i)
kl

∣

Given X , note that R(i)kl is Gaussian with variance

σ2
w

d2λ2
d

((X(i))∶,k⊺(I −XA(X⊺
AXA)−1X⊺

A)2(X(i))∶,k) (53)

Moreover, XA(X⊺
AXA)−1X⊺

A is an orthogonal projection onto the range of XA. Therefore,

σ2
w

d2λ2
d

((X(i))∶,k⊺(I −XA(X⊺
AXA)−1X⊺

A)2(X(i))∶,k)

= σ2
w

d2λ2
d

((X(i))∶,k⊺(I −XA(X⊺
AXA)−1X⊺

A)(X(i))∶,k)

≤ σ2
w

d2λ2
d

∥(X(i))∶,k∥2
2 (54)

Define pi = ni if 1 ≤ i ≤ n̄ and pi =mi if n̄+1 ≤ i ≤ n̄+m̄. Due to Lemma 2, the last inequality is upper bounded by

4σ2
wσ

2
max/dλ2

d for every k ∈ {1, ..., pi} with probability of at least 1−exp(−d/2+log pi) for d > 2 log pi. Conditioned

on this event, one can write:

Z
(i)
1 = max

ε∈{−1,+1}pi×nj
∑

(k,l)∈Ψ(i)
εklR

(i)
kl (55)

which means that ∑(k,l)∈Ψ(i) εklR
(i)
kl is sub-Gaussian with the parameter 4Djσ

2
wσ

2
max/dλ2

d. This implies that

P(max
i∈Ac

Z
(i)
1 ≥ζ)=P

⎛
⎝

max
i∈Ac

max
ε∈{−1,+1}pi×nj

∑
(k,l)∈Ψ(i)

εklR
(i)
kl ≥ ζ

⎞
⎠

≤2 exp(− dλ2
dζ

2

8Djσ2
wσ

2
max

+Dj+log(n̄+m̄))

+ exp (−d/2 + log pmax + log(n̄ + m̄))
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where we have used Lemma 1, the second statement of Lemma 4 and the facts that pi ≤ pmax and ∣Ac∣ ≤ n̄+ m̄ in

the last inequality. Now, setting ζ = γ/2 and

λd ≥

¿
ÁÁÀ32c1σ2

wσ
2
max

γ2
⋅ (Dj)2 +Dj log(n̄ + m̄)

d
(56)

for some arbitrary constant c1 > 1 yields that

P(max
i∈Ac

Z
(i)
1 < γ/2) ≥1 − 2 exp(−(c1 − 1)(Dj + log(n̄ + m̄)))

− exp(−d/2 + log pmax + log(n̄ + m̄))

≥1 − 3 exp(−(c1 − 1)(Dj + log(n̄ + m̄))) (57)

where the last inequality is due to the lower bound (44b) on d. Next, an upper bound on maxi∈Ac Z
(i)
2 will be

derived. Since each row of X is drawn from N(0, Σ̃), one can write the distribution of X⊺
Ac , conditioned on XA

as

N(Σ̃Ac,A(Σ̃A,A)−1X⊺
A, Σ̃Ac,Ac − Σ̃Ac,A(Σ̃A,A)−1Σ̃A,Ac

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σ̃Ac ∣A

) (58)

Based on (58), one can verify that 1
d
X⊺
AcXA( 1

d
X⊺
AXA)−1S̃A has the same distribution as

Σ̃Ac,A(ΣA,A)−1S̃A +
1

d
V ⊺XA(

1

d
X⊺
AXA)−1S̃A (59)

where V is a random matrix with zero mean, covariance Σ̃Ac∣A, and independent of X . In light of the definition

of Σ̃Ac∣A, it can be easily seen that the elements of V are sub-Gaussian with parameters of at most σ2
max. This

implies that

max
i∈Ac

Z
(i)
2 ≤max

i∈Ac
∥Σi,A(ΣA,A)−1S̃A∥1

+max
i∈Ac

∥1

d
V(i)

⊺XA(
1

d
X⊺
AXA)−1S̃A∥

1

≤1 − γ +max
i∈Ac

∥1

d
V(i)

⊺XA(
1

d
X⊺
AXA)−1S̃A∥

1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z
(i)
3

(60)

where we have used the mutual incoherence property and the fact that ∥S̃(i)∥1 = 1 for every i ∈ A. Now, it remains

to show that maxi∈Ac Z
(i)
3 < γ/2 with high probability. Similar to Z(i)1 , one can write:

Z
(i)
3 = ∑

(k,l)∈Ψ(i)
∣ 1

d
(V(i))∶,k⊺XA(

1

d
X⊺
AXA)−1(S̃A)∶,l

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T
(i)
kl

∣ (61)

Given X , note that T (i)kl is Gaussian with variance

σ2
max(S̃A)⊺∶,l (

1

d
X⊺
AXA)

−1

(S̃A)∶,l (62)
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Also, ∥(S̃A)∶,l∥2
2 ≤ kj . Therefore, Lemma 3 can be used to bound (62) as follows:

(S̃A)⊺∶,l (
1

d
X⊺
AXA)

−1

(S̃A)∶,l ≤ σ2
maxkj ∥

1

d
(1

d
X⊺
AXA)−1∥

2

≤ σ2
maxkj (

1

d

8

Λmin
+ 1

d
∥Σ−1
A,A∥2

)

≤ σ2
maxkj (

1

d
⋅ 8

Λmin
+ 1

d
⋅ 1

Λmin
)

≤ 9σ2
maxkj

Λmind
(63)

with probability of at least 1 − 2 exp(−d/2). Similar to the arguments made for bounding maxi∈Ac Z
(i)
1 , one can

verify that

P(max
i∈Ac

Z
(i)
3 <γ/2)≥ 1−2 exp ( − Λmindγ

2

72σ2
maxkjDj

+Dj

+log(n̄ + m̄)) − 2 exp ( − d
2
) (64)

Now, choosing

d ≥ 72c2σ
2
maxkjDj

Λminγ2
⋅ (Dj + log(n̄ + m̄)) (65)

for some arbitrary constant c2 > 1 results in

P(max
i∈Ac

Z
(i)
3 <γ/2)≥1−4 exp(−(c2 − 1)(Dj+log(n̄ + m̄)))

Therefore, maxi∈Ac ∥S̃(i)∥1 < 1 and, hence, PDW succeeds with a probability that is lower bounded by (45).

B. Proof of Lemma 7:

In order to bound the estimation error, an upper bound on ∥E∥∞ will be derived, conditioning on the success

of the PDW approach. Note that EAc = 0 according to Lemma 10 and, hence, it suffices to bound ∥EA∥∞. Again,

due to Lemma 10, one can write:

max
k=1,...,nj

∥(EA)∶,k∥∞≤ max
k=1,...,nj

∥(1

d
X⊺
AXA)−1 1

d
X⊺
AW∶,k∥

∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Zk
4

+ max
k=1,...,nj

∥(1

d
X⊺
AXA)−1λd(S̃A)∶,k∥

∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Zk
5

for k = 1,2, ..., nj . For bounding Zk5 , it can be argued similarly to (63) that

max
k=1,...,nj

Zk5 ≤ max
k=1,...,nj

∥((1

d
X⊺
AXA)−1 −Σ−1

A,A)λd(S̃A)∶,k∥
∞

+ max
k=1,...,nj

∥Σ−1
A,Aλd(S̃A)∶,k∥∞

≤∥(1

d
X⊺
AXA)−1 −Σ−1

A,A∥
2
λd

√
kj +

λd
Λmin

≤ λd
Λmin

⎛
⎝

8
√
kj

√
kjnj + c3 log(n̄ + m̄)

d
+ 1

⎞
⎠

(66)



21

for some c3 > 0 with probability of at least 1 − 2 exp(−(kjnj + c3 log(n̄ + m̄))/2), where we have used the matrix

norm properties and Lemma 3 with t = kjnj + c3 log(n̄ + m̄) (note that ∣I(A)∣ ≤ kjnj). Now, it remains to bound

maxk=1,...,nj Z
k
4 . This can be carried out similar to the previous arguments, i.e., by making use of (63) and obtaining

a sub-Gaussian parameter for ( 1
d
X⊺
AXA)−1 1

d
X⊺
AW∶,k. For brevity, only the final key relation is stated below:

P( max
k=1,...,nj

Zk4 ≥ζ) ≤2 exp (− dΛminζ
2

18σ2
w

+lognj +log(kjnj))

+ 2 exp(−d/2)

≤2 exp (− dΛminζ
2

18σ2
w

+2(αn+αk)log(n̄+m̄))

+ 2 exp(−d/2) (67)

where the last inequality is due to the assumption that nj ≤ nmax = O ((n̄ + m̄)αn) and kj ≤ kmax = O ((n̄ + m̄)αk).

Now, setting

ζ =
√

36c4(αn + αk)σ2
w log(n̄ + m̄)

dΛmin
(68)

for an arbitrary constant c4 > 1, together with the inequality log r1 ≤ log(kjDj), leads to

max
k=1,...,nj

Zk4 ≤
√

36c4(αn + αk)σ2
w log(n̄ + m̄)

dΛmin
(69)

with probability of at least

1 − 2 exp (−2(c4 − 1)(αn + αk) log(n̄ + m̄)) − 2 exp(−d/2) (70)

Combining this inequality with (66) results in the elementwise error bound (47) with probability of at least (46).

This concludes the proof.

C. Proof of Theorem 1:

First, we present the sketch of the proof in a few steps:

1. We decompose the block-regularized problem (9) into n̄ disjoint block-regularized subproblems defined in (43).

2. For each of these subproblems, we consider the event that Lemmas 6 and 7 hold.

3. We consider the intersection of these n̄ events and show that, together with (18a) and (18b), they lead to the

element-wise error (19) with probability of at least 1 − δ.

Step 1: (9) can be rewritten as follows:

Ψ̂ = arg min
Ψ

n

∑
j=1

( 1

2d
∥Y (∶,j) −XΨ(∶,j)∥2

2 + λ∥Ψ(∶,j)∥block) (71)

The above optimization problem can be naturally decomposed into n̄ disjoint block-regularized subproblems in the

form of (43).
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Step 2: Assume that (44b) and (44a) hold for every 1 ≤ j ≤ n̄. Upon defining Tj as the event that Lemmas 6

and 7 hold, one can write:

P(Tj) ≥ 1 − 5 exp ( − (c1 − 1)(Dj + log(n̄ + m̄)))

− 4 exp ( − (c2 − 1)(Dj + log(n̄ + m̄)))

− 2 exp(−(kjnj + c3 log(n̄ + m̄))/2)

− 2 exp ( − 2(c4 − 1)(αn + αk) log(n̄ + m̄)))

(72)

For every 1 ≤ j ≤ n̄.

Step 3: Assume that c1, c2, c4 > 2 and c3 > 1. Consider the event T = T1 ∩ T2 ∩ ⋯ ∩ Tn. Based on (72) and

Lemma 4, one can write:

P(T )≥1−K1(n̄ + m̄)−(c1−2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(a)

−K2(n̄ + m̄)−(c2−2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b)

−K3(n̄ + m̄)−(
c3
2 −1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(c)

−K4(n̄ + m̄)−(2(αn+αk)(c4−1)−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(d)

(73)

for some constants K1,K2,K3,K4. One can easily verify that the following equalities are enough to guarantee that

the right hand side of (73) is equal to 1 − δ:

c1 =
log(4K1/δ)
log(n̄ + m̄) + 2,

c2 =
log(4K2/δ)
log(n̄ + m̄) + 2,

c3 = c1 =
2 log(4K3/δ)
log(n̄ + m̄) + 2,

c4 =
log(4K4/δ)

2(αn + αk) log(n̄ + m̄) +
1

2(αn + αk)
+ 1. (74)

Substituting (74) in Lemmas 6 and 7 leads to two observations:

- If λd and d satisfy (18a) and (18b), then they also satisfy (44a) and (44b).

- The parameter g defined in (19) is greater than or equal to gj for every j = 1, ..., n̄.

Therefore, (18a) and (18b) guarantee that: 1) Ψ̂ is unique and does not have any false positive in its blocks, and 2)

its element-wise error is upper bounded by (19). Now, it only remains to show that Ψ̂ excludes false negatives (the

blocks that are mistakenly estimated to have nonzero values). To this goal, it suffices to show that (18b) guarantees

g < tmin. Suppose that

d = Ω (CΨκ(Σ̃)2kmax (D log(n̄ + m̄) +D2 log(1/δ))) (75)

In what follows, we will show that CΨ = O(1) is enough to have g < tmin. The lower bound on d in (18b) yields

that

g ≤K ( 1√
CΨkmax

+ 1

CΨκ(Σ̃)
) (76)
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for some constant K. Therefore,

CΨ = 2/K
tminκ(Σ̃)

+ 4/K
t2minkmax

= O(1) (77)

is enough to ensure g < tmin. This completes the proof.

V. NUMERICAL RESULTS

In this section, we illustrate the performance of the block-regularized estimator and compare it with its least-

squares counterpart. We consider three case studies on synthetically generated systems and multi-agent systems.

The built-in lasso function in MATLAB and the PQN package from [40] are used to obtain the Lasso and block-

regularized estimators, respectively. These solvers are relatively fast in practice; they can solve the largest instance

of the problem (with approximately 9.7 million unknown parameters) in approximately 9.28 and 7.69 minutes,

respectively.

Define the (block) mismatch error as the total number of false positives and false negatives in the (block) sparsity

pattern of the estimator. Moreover, define relative number of sample trajectories (RST) as the number of sample

trajectories normalized by the dimension of the system, and relative (block) mismatch error (RME) as the mismatch

error normalized by total number of elements (blocks) in Ψ. To verify the developed theoretical results, λd is set to
√

2(D2 +D log(n̄ + m̄))
d

(78)

in all of the experiments. Note that this choice of λd does not require any additional fine-tuning.

A. Case Study 1: Synthetically Generated Systems

Given the numbers n and w, and for each instance of the problem, the state and input matrices are constructed

as follows: The size of each block in A and B is set to 1. The diagonal elements of A ∈ Rn×n and B ∈ Rn×n are

set to 1 (the dimensions of the inputs and states are chosen to be equal). The elements of the first w upper and

lower diagonals of A and B are set to 0.3 or −0.3 with equal probability. Furthermore, at each row of A, another

w elements are randomly chosen from the elements not belonging to the first w upper and lower diagonals and set

to 0.3 or −0.3 with equal probability. We set Σu = I and Σw = 0.5I . The mutual incoherence property is satisfied

for most of the constructed instances.

In the first set of experiments, we consider the mismatch error of Ψ̂ with respect to the number of sample

trajectories and for different system dimensions. The length of the time horizon T is set to 3. The results are

illustrated in Figure 1a for n+m equal to 200, 600, 1200, and 2000. In all of these test cases, w is chosen in such

a way that the number of nonzero elements in each column of Ψ is between (n +m)0.3 and (n +m)0.4. It can be

observed that as the dimension of the system increases, a higher number of sample trajectories is required to have

a small mismatch error in the block-regularized estimator. Conversely, the required value of RST to achieve a small

RME reduces as the dimension of the system grows. More precisely, RST should be at least 1.80, 1.13, 0.37, and

0.20 to guarantee RME ≤ 0.1%, when m + n is equal to 200, 600, 1200, and 2000, respectively.
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Fig. 1: (a) The mismatch error with respect to the number of sample trajectories for different system dimensions, (b) the mismatch error with

respect to the number of sample trajectories for different time horizons, (c) the condition number of FF ⊺ + GG⊺ with respect to the time

horizon.

In the next set of experiments, we consider the mismatch error for different time horizons T = 3,4, ...,7, by

fixing m + n = 600 and w = 2. As mentioned before, large values of T tend to inflate the easily identifiable modes

of the system and suppress the nearly hidden ones, thereby making it hard to obtain an accurate estimation of the

parameters. It is pointed out that κ(FTF ⊺
T + GTG⊺

T ) is a good indicator of the gap between these modes. This

relationship is clearly reflected in Figures 1b and 1c. As can be observed in Figure 1b, 330 sample trajectories

are enough to guarantee RME ≤ 0.1% for T = 3. However, for T = 7, RME cannot be reduced below 0.42% even

with 1000 sample trajectories. To further elaborate on this dependency, Figure 1c is used to illustrate the value of

κ(FTF ⊺
T +GTG⊺

T ) with respect to T in a log-log scale. One can easily verify that κ(FTF ⊺
T +GTG⊺

T ) associated

with T = 7 is 485 times greater than this parameter for T = 3.

Finally, we study the block-regularized estimator for different per-column numbers of nonzero elements in Ψ

and compare its accuracy to the least-squares estimator. Fixing T = 3 and m + n = 600, Figure 2a depicts the

mismatch error of the block-regularized estimator when the maximum number of nonzero elements at each column

of Ψ ranges from 7 (corresponding to w = 1) to 27 (corresponding to w = 5). Not surprisingly, the required number

of samples to achieve a small mismatch error increases as the number of nonzero elements in each column of Ψ

grows. On the other hand, the least-squares estimator is fully dense in all of these experiments, regardless of the

number of sample trajectories. To have a better comparison between the two estimators, we consider the 2-norm of

the estimation errors normalized by the 2-norm of Ψ∗, for different numbers of nonzero elements in each column

of Ψ∗. As it is evident in Figure 2b, the block-regularized estimator significantly outperforms the least-squares one

for any number of sample trajectories. Furthermore, the least-squares estimator is not defined for d < 600.

B. Case Study 2: Switching Networks

In this case study, we study a network of multi-agent systems that are interconnected through a switching

information exchange topology. Recently, a special attention has been devoted to multi-agent systems with a time-
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Fig. 2: (a) The mismatch error with respect to the number of sample trajectories for different per-column number of nonzero elements in Ψ∗,

(b) the normalized estimation error for Lasso and least-squares (abbreviated as LS) estimators with respect to the number of sample trajectories.

varying network topology; in many communication networks, each sensor has access only to the information

of its neighbors. Therefore, when the location of these sensors changes over time, so does the topology of the

interconnecting links [41]. The dwell time is defined as the time interval in which the network topology is unchanged.

The goal is to identify the structure of the network within the dwell time. The state-space equation of agent i admits

the following general form:

ẋi(t) = ∑
(i,j)∈Nx(i)

A(i,j)xj(t) + ∑
(i,j)∈Nu(i)

B(i,j)uj(t) +wi(t) (79)

where, as before, A(i,j) ∈ Rni×ni and B(i,j) ∈ Rni×mi are the (i, j)th blocks of A and B. Furthermore, Nx(i) and

Nu(i) are the sets of neighbors of agent i whose respective state and input actions affect the state of agent i.

We consider 200 agents connected through a randomly generated sparse network. In particular, we assume that

each agent is connected to 5 other agents. If j ∈ Nx(i) or j ∈ Nu(i), then each element of A(i,j) or B(i,j) is

randomly selected from [−0.4 − 0.3] ∪ [0.3 0.4]. The behavior of the proposed block-regularized estimator will

be examined for different dimensions of the agents. In particular, we investigate the performance of this estimator

in comparison with the Lasso for which the sparsity of the system matrices is promoted on different elements

independent of the block structures. In these experiments, (ni,mi) is chosen from {(5,5), (8,8), (11,11)}. This

entails that D ∈ {25,64,121} and (n,m) ∈ {(1000,1000), (1600,1600), (2200,2200)}. Furthermore, T is set to 3

and the system is discretized using the forward Euler method with the sampling time of 0.2 seconds. This implies

that each sample trajectory is collected within 0.6 seconds. The number of block mismatch and 2-norm estimation

errors are depicted in Figures 3a and 3b with respect to the dwell time. As can be seen in these figures, the

incorporation of the block sizes in the estimation procedure can significantly improve the accuracy.

Figure 3a shows the number of block mismatch error for the block-regularized and Lasso estimators. Evidently,

the former substantially outperforms the latter in terms of the correct sparsity recovery. In particular, 252, 260,
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Fig. 3: (a) The block mismatch error for the block-regularized (abbreviated as BR) and Lasso (abbreviated as L) estimators with respect to

the dwell time and for different block sizes in Ψ∗, (b) the normalized estimation error for the block-regularized (abbreviated as BR) and Lasso

(abbreviated as L) estimators with respect to the dwell time for different block sizes in Ψ∗.

and 302 sample trajectories are enough to achieve RME ≤ 0.1% when D is equal to 25, 64, and 121, respectively

(notice that the largest instance has more than 9 million parameters to be estimated). However, the Lasso estimator

cannot achieve this accuracy with even 2000 sample trajectories.

Figure 3b demonstrates the 2-norm of the estimation error for these estimators. Although the Lasso has a smaller

estimation error for d < 200, it is strictly dominated by that of the block-regularized estimator when d ≥ 200.

VI. CONCLUSION

We consider the problem of identifying the parameters of linear time-invariant (LTI) systems. In many real-world

problems, the state-space equation describing the evolution of the system admits a block-sparse representation

due to localized or internally limited interactions of its states and inputs. In this work, we leverage this property

and introduce a block-regularized estimator to identify the sparse representation of the system. Using modern

high-dimensional statistics, we derive sharp non-asymptotic bounds on the minimum number of input-state data

samples to guarantee a small element-wise estimation error. In particular, we show that the number of available

sample trajectories can be significantly smaller than the system dimension and yet, the proposed block-regularized

estimator can correctly recover the block-sparsity of the state and input matrices and result in a small element-wise

error. Through different case studies on synthetically generated systems and multi-agent systems, we demonstrate

substantial improvements in the accuracy of the proposed estimator, compared to its well-known least-squares

counterpart.
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