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New challenges for the smart grid

Traditional Grid

Smart Grid

New infrastructure
More data
Increased demand
More cyclic structure
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Fundamental challenges in power system optimization

Scalability

• 145 million customers
• Over 7,300 power plants
• 160,000 miles high-voltage power lines

In practice

• Divided into smaller regions
• Poor local decisions → cascading failures in 

interconnected network
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Fundamental challenges in power system optimization

Optimality

• Nonlinear nature of alternating current (AC) 
power flow → many problems are nonconvex

• Difference between local and global solutions 
is estimated at billions of $ annually in the US
(source: FERC)

In practice

• Optimization stage: Linearize power flow 
equations (DC approximation)

• Use heuristics to generate feasible AC solution
• New interest in conic relaxations that have 

global guarantees

𝑓(𝑥)
&𝑓(𝑥)

Duality 
gap
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ØTake a cross-disciplinary approach to solve important problems in power 
systems optimization
ØFocus on both fundamental problems and new problems

ØSynthesize advanced methods from optimization and mathematics 
ØAlgebraic geometry, graph theory, numerical methods
ØDomain-specific understanding: the physics of power flow, sparse graph structure1

ØLeverage novel theory to develop new algorithms

1S. Sojoudi and J. Lavaei, "Physics of power networks makes hard optimization problems easy to solve," 2012.

Goals of my PhD thesis work
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Underlying + new power system problems

Many problems in power systems planning and operation are based on 
fundamental problems

Optimal 
Power Flow 
(OPF)

Post-
contingency 
OPF

Power System 
State Estimation 
(SE)

Optimal 
measurement 
choice

Power flow (PF) 
mapping

Machine 
learning (ML) 
method

Part I Part II Part III
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Part I: Optimal Power Flow (OPF)

Two projects:
1) Finding the worst-case local minimum of OPF
2) Finding the global solution to a post-contingency OPF
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Part I: Optimal Power Flow (OPF)

Two projects:
1) Finding the worst-case local minimum of OPF
2) Finding the global solution to a post-contingency OPF

Mentor: Prof. Somayeh Sojoudi
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ØGoal: find minimum cost 
production of committed 
generating units
ØWhile satisfying technological 

and physical constraints

ØExisting methods
ØLocal: Interior Point Methods 

(IPM), Sequential Quadratic 
Programming (SQP)

ØGlobal: Convex relaxations 
(SDP, SOCP)1,2,3

min! 𝑓 𝑥
s.t. ℎ 𝑥 = 0

𝑔 𝑥 ≤ 0

cost of real power 
generation

AC power flow equations

technological & physical constraints

(𝑣 ∈ ℂ!, 𝑝" ∈ ℝ!, 𝑞" ∈ ℝ!)

1X. Bai et al. “Semidefinite programming for optimal power flow problems,” 2008.
2J. Lavaei and S. Low, “Zero Duality Gap in Optimal Power Flow Problem,” 2012.
3W. Bukhsh et al. “Local Solutions of the Optimal Power Flow Problem,” 2013.

Optimal Power Flow (OPF)
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1E. Glista and S. Sojoudi, “Convex model to evaluate worst-case performance of local search in the optimal power flow 
problem,” IEEE 59th Conference on Decision and Control, 2020.

𝑓(
𝑥)

𝑥

worst-case

Goal: Bound the worst-case performance of a 
generic local search solver

min#∈ℝ! 𝑥&𝑀'𝑥 + 𝑘
s.t. 𝑥&𝑀(𝑥 = 𝑎( , ∀𝑖 = 1, … , 𝑝

OPF as a QCQP

Finding the worst-case local minimum1

Local search method

min# 𝑓 𝑥
s.t. ℎ 𝑥 = 0

𝑔 𝑥 ≤ 0

Canonical-form OPF

min!∈ℝ! 𝑥$𝑀%𝑥
s.t. 𝑥$𝑥 = 1

Example
QCQP
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The worst-case local minimum

v Idea: Create an upper bound on the worse-case local minimum

Our method:
Construct a new 
“worst-case local 
min” problem

Take a convex relaxation of the “worse-case” 
problem into a semidefinite program (SDP)

Show that tightness of SDP depends 
on choice of parameter c

max!∈ℝ! 𝑥$𝑀%𝑥 + 𝑘
s.t. 𝑥 ∈ {local minima of QCQP}

Feasible set given by first- and 
second-order optimality conditions

0 = ∇#𝐿 𝑥∗, 𝜆∗ = 2𝑀'𝑥∗ + 2E
(*+

,

𝜆(∗𝑀(𝑥∗

𝑥∗ &𝑀(𝑥∗ = 𝑎( , ∀𝑖 = 1, … , 𝑝

𝑀' +E
(*+

,

𝜆(∗𝑀( + 𝑐E
(*+

,

𝑀( 𝑥∗ 𝑥∗ &𝑀( ≽ 0

for some 𝑐 above a certain threshold, 𝑐 > ̅𝑐

Upper bound on problem
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ØIf we take 𝑐 = 0 in the SDP relaxation, the SDP relaxation 
is exact (thus its solution is the worst-case local minimum)

ØFor 𝑐 > 0, the SDP relaxation is not exact

𝑥+

𝑥&
𝑀
'𝑥

𝑥-

min!∈ℝ! 𝑥$𝑀%𝑥
s.t. 𝑥$𝑥 = 1

Example
QCQP

ØExact value of 𝑐 is not needed for the SDP relaxation
ØSelecting too large of a 𝑐 ⟹ larger optimality gap between the SDP relaxation & the 

original worst-case local min problem

ØAlso looked at introducing a penalty term to the objective to get tight SDP relaxation

Choice of parameter 𝒄:

Exactness of SDP relaxation
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IEEE 9-bus network

IEEE 14-bus network “Discovered’’ 
local minima

SDP of 
worst-case 
local min 
problem

Simulations on realistic networks

Solution timeframe: 
~ 3-5 minutes
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Compare the SDP worst-case upper bound with the SDP lower bound to obtain bounds on the range 
of possible objective values obtained with local search

Original 
Problem

Range of possible 
local search objective 
values

Relation to existing methods
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Worst-case local min: summary & conclusions

• Formulated a new problem to find the worst-case local minimum for a 
canonical QCQP (e.g. OPF)
• Since this problem is still nonconvex, use an SDP relaxation to find an upper 

bound

• Find that the tightness of the upper bound depends on the choice of 
a parameter in the second-order necessary optimality condition

• Method provides a metric on how much SDP can outperform local 
search → evaluate the performance of the whole class of local search 
methods
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Part I: Optimal Power Flow (OPF)

Two projects:
1) Finding the worst-case local minimum of OPF
2) Finding the global solution to a post-contingency OPF

Mentors: Prof. Somayeh Sojoudi, Prof. Javad Lavaei
Collaborator: SangWoo Park
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min! 𝑓 𝑥, 𝜆
s.t. ℎ 𝑥, 𝜆 = 0

𝑔 𝑥, 𝜆 ≤ 0
𝑯(𝝀)

𝑯 𝝀𝟎

𝑯 𝝀𝟏 𝑯 𝝀𝟐 𝑯 𝝀𝑵

Base SCOPF

Contingency 
OPF (COPF)

1S. Park, E. Glista, J. Lavaei, and S. Sojoudi, “Homotopy method for finding the global solution of post-contingency optimal power flow,” 
American Control Conference, 2020. Won the Best Student Paper Award.

Base SCOPF problem approximates the contingencies but does not explicitly 
solve for them

Parametric OPF for post-contingency analysis1

Want to efficiently solve coupled post-
contingency OPF problems to global optimality 
given the solution to the base case
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Ø Approach: Design 
sequences of intermediate 
problems that connect the 
base problem to each of its 
variations 𝑯 𝝀𝟏

𝑯 𝝀𝟎

𝑯 𝝀𝟐 𝑯 𝝀𝑵

COPF

SCOPF

Homotopy method to solve contingency-OPF 

Ø Goal: Efficiently find the 
global solution to all the 
variations, given a global 
solution to the base 
problem
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ØHomotopy and continuation methods have long been used in mathematics & 
engineering to solve systems of nonlinear equations
ØPower systems: continuation power flow1

ØDiscretize path from 𝜆U = 1 to 𝜆V = 0
ØApplication to optimization is more recent2,3

𝐻 𝜆 = min
!
{𝜆 ⋅ 𝑠 𝑥 + 1 − 𝜆 ⋅ 𝑓 𝑥 }

ØConvergence to a global minimum is not guaranteed for nonconvex problems

“Easy” problem: 𝑠(𝑥) = 0 “Hard” problem: 𝑓(𝑥) = 0

Define   𝐻 𝑥, 𝜆 = 𝜆 ⋅ 𝑠 𝑥 + 1 − 𝜆 ⋅ 𝑓(𝑥)

1D. Mehta et al., “Numerical polynomial homotopy continuation method to locate all the power flow solutions,” 2016.
2L.T. Watson and R.T. Haftka, “Modern homotopy methods in optimization,” 1989.
3D.M. Dunlavy and D.P. O’Leary, “Homotopy optimization methods for global optimization,” 2005.

Background on homotopy methods
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conductance susceptance

Line out

Line intact

Implementation of homotopy for contingency-OPF

Line Outage

Generator Outage

power 
generated in 

base-case

power generated in 
contingency (based 
on participation factors)
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Scenario 2

𝝀𝒐

𝝀𝒇

····

Scenario 1

No 
homotopy

No 
homotopy

With 
homotopy

With 
homotopy

Two global 
solutions

Some homotopy paths are more desirable
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ØSome homotopy paths are more desirable than others

ØIf we can say that the global minimum is unique (& satisfies 
some conditions) for the homotopy OPF problems, then we 
can track the global minimum1

ØAssumes no degeneracy or infeasibility along the path

ØFamilies of parametric optimization problems generically 
have a unique global solution satisfying conditions
ØShowed that this applies to contingency-OPF1

1S. Park, E. Glista, J. Lavaei, and S. Sojoudi, “An efficient homotopy method for solving the post-contingency optimal power flow to 
global optimality,” IEEE Access. November 2022.

Theory to characterize desirable homotopy paths
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3012-bus Polish network with different single line outages

Homotopy method is effective in practice

Solution timeframe: 
~ 2-5 minutes
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Homotopy methods for COPF: conclusions

Need to solve many contingency-OPF problems to global optimality in a short 
period of time

Process:
Ø Defined a homotopy method that connects the Base OPF to COPF
Ø Each step of the homotopy problem is solved via fast local-search algorithm
Ø Characterized “good” homotopy path that will lead us to the global solution of 

COPF
Ø Applied to real-world networks

Demonstrated that the method results in significant violation cost reductions in 
about 10% of the hundreds of examined cases and no worse performance in the 
others
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Part II: Power Systems State Estimation (SE)

Project: Optimizing sensor placement to ensure robustness 
in power system SE

Mentor: Prof. Somayeh Sojoudi
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State estimation (SE) is critical for grid operation

Supervisory Control & 
Data Acquisition 

(SCADA)

State Estimation 
problem

(every few mins)

Real-time power 
dispatch

Voltage control

Contingency 
actions
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Robust SE and the optimization of sensor placement

• Determine real-time state of power network 
→ power systems state estimation (SE)
• Noisy or corrupted/attacked data → robust 

power systems SE

v Focus: How to place sensors in a power 
network to optimize for robustness of 
power systems SE

Ø Approach: Formulate a mixed-integer linear 
program (MILP) for measurement choice 
that optimizes a robustness condition1 ?

?

?

𝑣F 𝑒jG!

1E. Glista and S. Sojoudi, “A MILP for Optimal Measurement Choice in Robust Power Grid State Estimation,” 2022 IEEE Power & Energy 
Society General Meeting.  Won Best Conference Paper Award (Power Systems Modeling & Analysis).
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Builds on linearized SE model1

• Nonlinearity of AC power flow → SE is nonlinear, nonconvex → hard to solve!
• Two-stage model1 that can be solved to global optimality with local search methods 

Given: Power network given as 𝒢 = 𝒩,ℒ , set of buses 𝒩 and set of lines ℒ, 
measurement set ℳ

Input: Noisy, corrupted 
measurements y ∈ ℝ\, 
where 𝑚:= ℳ

Stage 1: Solve SE problem 
using linearized basis x ∈ ℝ]
to get an estimate 4x. 

Stage 2: Recover an 
estimate of underlying 
voltage vector 4v from 4x.

1M. Jin et al., “Scalable and robust state estimation from abundant but untrusted data,” IEEE Transactions on Smart Grid, vol. 11, no. 3, 
pp. 1880–1894, 2020.
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Linearized SE model & mutual incoherence

Linearized model 
y = 𝐴x +w + b

1M. Jin et al., “Scalable and robust state estimation from abundant but untrusted data,” IEEE Transactions on Smart Grid, vol. 11, no. 3, 
pp. 1880–1894, 2020.

4𝑥 = argmin
x,b

^
_ ℳ y − 𝐴x − b _

_ + λ b ^ (SE)

measurements
sensing 
matrix

random
noise

bad 
data

unknown 
state

measurement 
set

regularization 
parameter > 0estimated state

• Mutual coherence is a measure of the cross-correlation of the columns of a matrix
• “Mutual incoherence” measures alignment of two submatrices in 𝐴, one related to clean data, 

one to corrupted data 
Mutual incoherence
ρ ℬ = Aℬ𝒸

"#Aℬ" $

Bad data support
ℬ:= supp b

Clean data support
ℬ% =ℳ ∖ ℬ

If ρ ℬ < 1, then Stage 1 
recovers /x with small error 
from x* with high probability1

Global state recovery  = impossible Local recovery  = ?
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Local certification of mutual incoherence

Instead of considering the bad data support (unknown), we consider a local 
condition

Local mutual incoherence condition

ρab: = 𝐴
ℳ!"

#$,𝒳"
#$

de 𝐴
ℳ%"

#$ ,𝒳"
#$

d

f
< 1

ρ-1, ρ1-
1

2 3 4
ρ+- < 1 ρ12, ρ21

Local recovery

Partition of measurements & state variables

𝐴 =

𝐴ℳ&,𝒳& 0 0
𝐴ℳ%",𝒳& 𝐴ℳ%",𝒳" 0

0 𝐴ℳ!",𝒳" 0
0 𝐴ℳ',𝒳" 𝐴ℳ',𝒳'

Consider an attack on a single line 𝑖, 𝑗 ∈ ℒ

A different partition is 
defined for each 
attacked 𝑖, 𝑗 ∈ ℒ
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Measurement choice as a MILP

v Idea: Optimize the choice of measurements in ℳ such that ρab < 1 for all 𝑖, 𝑗 ∈ ℒ
Our method:

Consider all possible 
measurements

• network topology
• available sensors

Partition 
measurements

• attacked region
• boundary regions
• safe region

Introduce binary measurement 
choice variable 𝜙 ∈ 0,1 \

• 𝜙 couples optimization problems 
over each ρ(3 , ∀ 𝑖, 𝑗 ∈ ℒ

Formulate an optimization problem over ɸ to 
minimize β where ρab ≤ β for all 𝑖, 𝑗 ∈ ℒ

Relax nonlinear constraints and 
prove exact
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Simulations on IEEE test cases

Fraction of 
meas.

𝛽 = 
max ρab

Solve 
time (s)

29 / 39 1.26 0.69
42 / 57 1.48 1.12
95 / 120 1.61 9.33
193 / 248 1.61 39.3

Results of problem that minimizes 
𝛽 where 𝜌ab ≤ 𝛽 for all 𝑖, 𝑗 ∈ ℒ

Results of problem that minimizes 
the number of violations of ρab < 1 

Fraction of 
meas.

Lines where 
ρab < 1

Solve 
time (s)

30 / 39 6 / 12 1.89
36 / 57 12 / 18 1.49
92 / 120 18 / 40 120.5
190 / 248 37 / 82 831.1

Network

case5
case9
case14
case30

No choice of measurements such that all lines are robust in case of attack!

However, we can find subsets of measurements that are more optimal 
than others in terms of SE robustness
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Possible to recover state in 
this region

Measurement choice: conclusions

Having more lines satisfy the mutual 
incoherence condition guarantees a 
reduction in the impact of the attack 
on power system SE for nodes far from 
the attacked region

Attack 
node

1 2 3 4

ρ+- < 1

Cannot 
recover true 

state

Cannot 
recover true 

state

Attack 
node

1 2 3 4

ρ-+ > 1

ρ-1 > 1

Possible to recover 
state

Cannot 
recover true 

state

Attack 
node

1 2 3 4

ρ-+ > 1

ρ-1 < 1

Measurement Set A

Measurement Set B



Elizabeth Glista, UC Berkeley Efficient methods for nonconvex AC power flow problems Slide 34 of 45

Part III: Power Flow (PF) Mapping Problem

Project: Learning the power system topology using a data-driven, 
physics-informed optimization

Mentor: Prof. Somayeh Sojoudi



Elizabeth Glista, UC Berkeley Efficient methods for nonconvex AC power flow problems Slide 35 of 45

Uncertain topology → problems for most PF methods

Uncertain topology in WB5 network

1 2

𝑌 =
1
𝑍

Uncertain topology = parameter uncertainty
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Exploiting large datasets to learn topology

PMUs collect ~30 
to 60 samples/sec

Ø Previous Approaches: Neural networks (NN), maximum likelihood estimation, 
support vector regression (SVR)1,2 → overfitting + ignore physics!

PMU 
data

𝑣a , 𝜃a

SCADA 
data

𝑝ab, 𝑞ab
𝑝a, 𝑞a

SCADA systems collect 
~1 sample every 4 sec

?

1J. Yu, Y. Weng, and R. Rajagopal, “Robust mapping rule estimation for power flow analysis in distribution grids,” in 2017 NAPS.
2J. Yuan and Y. Weng, “Support matrix regression for learning power flow in distribution grid with unobservability,” IEEE Transactions on 
Power Systems, vol. 37, no. 2, pp. 11510-1161, 2022.

Data collection from SCADA and 
PMU sources
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Data-driven approach to learn topology

Ø Goal: Recover the underlying power system topology from system data

Ø “Topology” = network connectivity & line parameters
Ø Robust in the presence of outliers and noise in data

Ø Our Approach: Design a constrained support vector regression (SVR) problem

Ø Approach allows exact representation of the true AC power system & its 
inherent sparsity

Ø Can efficiently solve SVR optimization problem with off-the-shelf quadratic 
program (QP) solvers or tailored algorithm

1E. Glista and S. Sojoudi, “Leveraging the physics of AC power flow in support vector regression to identify power system topology,” 
submitted to the 2023 Conference on Decision and Control (CDC), 2023.
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Idea: Find linear estimator that 
maximizes data proximity to plane

Kernel trick for nonlinear mappings

Background on SVR
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Power flow (PF) mapping as constrained SVR

v Idea: Create new SVR formulation with constraints that represent network sparsity

Our method:
Formulate PF 
mapping exactly as 
quadratic kernel

Define SVR problem with 
multiple types of SCADA 
measurements

Define sparsity pattern for power 
network → add as constraint to SVR

Controls the 
structure of 𝑊

Show that the constrained SVR and its dual 
are both convex quadratic programs (QPs)

𝐾 𝒙*, 𝒙+ = 𝒙*, 𝒙+ + = 𝜙 𝒙* $𝜙(𝒙+) for carefully chosen state 𝑥 ∈ ℝ+,
where 𝑛 is the number of buses equipped with PMUs 

→ Power flow mapping: 𝑝-. = 𝜇/"# , 𝜙(𝒙) , 𝑞-. = 𝜇0"# , 𝜙(𝒙)

State equation model: 𝒚1 = 𝑊𝜙(𝒙1)
for time steps 𝑡 ∈ {1, … , 𝑇}
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Simulations with SCADA + PMU errors

classic SVR
constrained SVR

14-bus IEEE network 
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Simulations with varying PMU penetration

30-bus IEEE network 
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Summary & conclusions

• Proposed a new constrained SVR method that can exactly learn the 
true power network topology in the case without noise
• Method has high accuracy in the cases with measurement noise and/or 

outliers and varying levels of PMU penetration
• Performs much better than state-of-the-art methods in terms of line 

parameter recovery and solution time

Improved power grid 
reliability, security, 
and efficiency

New infrastructure
More data
Increased demand

New methods 
& algorithms 
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max!∈ℝ! 𝑥$𝑀%𝑥 + 𝑘
s.t. 𝑥 ∈ {local minima of OPF}Worst-case local min

0 = ∇!𝐿 𝑥∗, 𝜆∗ = 2𝑀%𝑥∗ + 2]
-3*

/

𝜆-∗𝑀-𝑥∗First-order 
conditions

𝑥∗ $𝑀-𝑥∗ = 𝑎- ∀𝑖 = 1,… , 𝑝

𝑦$ ∇!!+ 𝐿 𝑥∗, 𝜆∗ 𝑦 ≥ 0
Second-order

necessary 
condition where ∇!!+ 𝐿 𝑥∗, 𝜆∗ = 2𝑀% + 2]

-3*

/

𝜆-∗𝑀-

for all 𝑦 such that 𝑦$𝑀-𝑥∗ = 0, ∀𝑖 = 1,… , 𝑝

Lagrange multiplier 𝝀 ∈ ℝ𝒑, (𝒙∗, 𝝀∗) corresponding to local minima:

The worst-case local minimum
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max!∈ℝ! 𝑥$𝑀%𝑥 + 𝑘
s.t. 𝑥 ∈ {local minima of OPF}Worst-case local min

0 = ∇!𝐿 𝑥∗, 𝜆∗ = 2𝑀%𝑥∗ + 2]
-3*

/

𝜆-∗𝑀-𝑥∗

𝑥∗ $𝑀-𝑥∗ = 𝑎- ∀𝑖 = 1,… , 𝑝

Lagrange multiplier 𝝀 ∈ ℝ𝒑, (𝒙∗, 𝝀∗) corresponding to local minima:

Alternative
second-order

necessary
condition

𝑀% +]
-3*

/

𝜆-∗𝑀- + 𝑐]
-3*

/

𝑀- 𝑥∗ 𝑥∗ $𝑀- ≽ 0

for some 𝑐 above a certain threshold, 𝑐 > ̅𝑐

The worst-case local minimum

First-order 
conditions
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max!∈ℝ!,6∈ℝ$ 𝑥$𝑀%𝑥 + 𝑘

s.t. 𝑥$𝑀-𝑥 = 𝑎- ∀𝑖 = 1,… , 𝑝

𝑀% + ∑-3*
/ 𝜆-𝑀- 𝑥 = 0

𝑀% +]
-3*

/

𝜆-𝑀- + 𝑐]
-3*

/

𝑀-𝑥𝑥$𝑀- ≽ 0

Worst-case
local min

for some 𝑐 above a certain threshold, 𝑐 > ̅𝑐

ØNonconvex
ØAny upper bound on the problem will also upper bound the worst-case local minimum
ØUse a relaxation of the problem into a semidefinite program (SDP)

The worst-case local minimum
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Worst-case
local min

Define a matrix 𝑊 ∈ 𝕊,7/7* as:

𝑊 =
1
𝑥
𝜆

1 𝑥$ 𝜆$ =
1 𝑥$ 𝜆$
𝑥 𝑥𝑥$ 𝑥𝜆$
𝜆 𝜆𝑥$ 𝜆𝜆$

𝑊 ≽ 0
𝑊** = 1

rank 𝑊 = 1

SDP of 
worst-case 
local min

max!∈ℝ!,6∈ℝ$ 𝑥$𝑀%𝑥 + 𝑘

s.t. 𝑥$𝑀-𝑥 = 𝑎- ∀𝑖 = 1,… , 𝑝

𝑀% + ∑-3*
/ 𝜆-𝑀- 𝑥 = 0

𝑀% +]
-3*

/

𝜆-𝑀- + 𝑐]
-3*

/

𝑀-𝑥𝑥$𝑀- ≽ 0

max8∈𝕊!%$%&,8≽%,8&&3* trace 𝑀%𝑊++ + 𝑘

s.t. trace{𝑀-𝑊++} = 𝑎- ∀𝑖 = 1,… , 𝑝

𝑀%𝑊+* +]
-3*

/

𝑀- 𝑊+; - = 0

𝑀% +]
-3*

/

𝑀- 𝑊;* - + 𝑐]
-3*

/

𝑀-𝑊++𝑀- ≽ 0

for some 𝑐 above a certain
threshold, 𝑐 > ̅𝑐 trace 𝑀%𝑊++ +]

-

/

𝑎- 𝑊;* - = 0

rank 𝑊 = 1

SDP relaxation of the worst-case local min
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WB2 2-bus 
network

Power generation costs:
𝑓( 𝑝(

" = 𝑐(-(𝑝(
")- + 𝑐(+𝑝(

" + 𝑐('

𝑥 = [Re{𝑣}& Im{𝑣}& 𝑝" & 𝑞" &]&

Add a penalty: 𝜖 ⋅ (trace{𝑊} − trace{𝑊--
,4})

1E. Glista and S. Sojoudi, “A Semidefinite Program to Bound the Worst-case Solution of Local Search Methods in Optimal Power Flow,” 2020.

Simulations on realistic networks1
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3375-bus Polish network with single generator outage
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Measurement choice problem v1

Objective: minimize maximum ρ-.

Constraints on number of measurements

Definition of ρ-.: = 𝐴
ℳ'(

"#,𝒳(
"#

$> 𝐴
ℳ)(

"# ,𝒳(
"#

$

?

Constraints on measurement dependencies 
(substitute for rank constraint)

ρ(3 = 𝑍(3 5

𝑌(3 = 𝑍(3

𝑅(3 ≔ 𝐴 6ℳ"#
$%,𝒳#

$%
&

𝑆(3 ≔ 𝐴 6ℳ&#
$% ,𝒳#

$%
&
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Measurement choice problem v2

Objective: minimize number of 
violations of ρ-. >1

𝛽-. represents ρ-.
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Sensor placement for robust SE: summary & conclusions 

ØNovel framework to formally optimize the placement of sensors in a power 
network in order to satisfy a condition for SE robustness

ØMethod:
o Leveraged a linearized SE framework and the concept of local partitioning
o Defined a MILP that optimizes the local mutual incoherence metric for each 

line in the network

Ø Can be used to place new sensors in an existing legacy power network in order 
to improve SE robustness

Ø Could be used to classify the measurements that are most susceptible to error 
propagation


